PRESERVATION ASSESSMENT AND PLAN FOR THE OLD ATHENS CEMETERY, ATHENS, GEORGIA

Chicora Research Contribution 459
PRESERVATION ASSESSMENT AND PLAN FOR THE OLD ATHENS CEMETERY, ATHENS, GEORGIA

Prepared By:
Michael Trinkley, Ph.D.
and
Debi Hacker

Prepared For:
Mr. Dexter Adams
Grounds Director
The University of Georgia
Physical Plant Division
Chicopee Complex
Athens, GA 30602

CHICORA RESEARCH CONTRIBUTION 459

Chicora Foundation, Inc.
PO Box 8664
Columbia, SC 29202
803-787-6910
www.chicora.org

December 22, 2006

This report is printed on permanent paper ∞
MANAGEMENT SUMMARY

The Old Athens Cemetery, situated on the University of Georgia campus, is an exceptionally beautiful and historic resource for the entire Athens community. Cemeteries, however, are very different from virtually all other types of properties that the University administers.

- They are sacred sites – consecrated within are the remains of loved ones deserving the utmost of care and respect.
- They are artistic sites, such as sculpture gardens or outdoor museums, representing permanent collections of three-dimensional artifacts requiring the same level of care that museums provide.
- They are archives – storehouses of genealogical information, representing our individual and collective pasts.
- And they are scenic landscapes – like parks or open spaces, but requiring far more focused and specific care.

In sum, cemeteries are social, historic, architectural, and archaeological artifacts. When there is little else physically remaining of a community’s earliest history, the local cemetery provides a unique tie to the past that would otherwise be lost.

Therefore cemeteries require very specific consideration and different care.

Over the years the Old Athens Cemetery has failed to receive the care and attention that it both deserves and requires. As a result of these years of deferred maintenance, a number of issues – many of them critical and costly – require the University’s immediate attention.

This report evaluates these needs, classifying them into three broad categories:

- Those issues that are so critical – typically reflecting broad administrative issues, health and safety issues, and issues that if delayed will result in significantly greater costs – that require immediate attention during the current fiscal or calendar year.
- Those issues that, while significant and reflecting on-going deterioration and concerns, can be spread over the next 2 to 3 years. This allows some budgeting flexibility, but this flexibility should not be misconstrued as a reason to ignore the seriousness of the issue.
- Finally, those issues that represent on-going maintenance and preservation issues. These costs can be spread over the following three to five years. Like the Second Priority issues, this budgetary flexibility should not be interpreted as allowing these issues to slide since further delay will only increase the cost of necessary actions.

The First Priority Issues have a budget of approximately $45,400.

- This includes approximately $7,000 for the immediate repair of a brick tomb that requires immediate repair to prevent catastrophic failure.
- Other critical first year costs include having all of the cemetery’s trees – one
of its finest yet most fragile resources – inspected and professionally treated by a certified arborist ($15,000).

- It is also necessary to immediately undertake an integrated and comprehensive program to stem the devastating amount of vandalism occurring in the cemetery. We estimate that this program (not including treatment of damaged monuments) will require at least $5,000.

- Related to the vandalism at the cemetery, we recommend the installation of appropriate regulatory signage at a cost of approximately $4,000. In addition, additional lighting is critically needed in the cemetery, focusing on the two pathways and on Jackson Street. The anticipated installation cost is approximately $9,000.

- Because of the vandalism and years of neglect the cemetery is littered with fragments of stone and ironwork. These must be secured to ensure their availability for appropriate conservation repair. This cost is estimated at $800.

- Another serious problem in the cemetery is litter. It degrades the historic fabric and encourages other inappropriate behavior since the property appears uncared for. We recommend installation of trash cans at various entry points, with a cost of approximately $1,300.

- Landscape related issues include the conversion of heavily shaded areas from weeds to mulch. The cost of this work is minor – about $900. Of equal importance is more adequate control of fire ants in the cemetery. This work will require baiting at a cost of about $2,000. The use of herbicide must be stopped immediately. In its place the University may use light gauge nylon trimmers. It is also likely that the cemetery will require a larger allocation of staff time to provide appropriate care and maintenance.

- There are a broad range of additional issues, including the need to formalize the policy that all decisions affecting the cemetery will made in the context of the Secretary of the Interior’s Standards for Preservation. It is critical to establish frequent police patrols through the cemetery.

Second priority issues are estimated to cost about $90,180, although this cost may be spread out over two years. Again, these costs are almost entirely associated with the cemetery’s years of neglect. The single greatest cost will be the repair of the many stones damaged – most by intentional vandalism.

- Approximately $65,000 (not including travel, per diem, and lodging) to repair damaged stone and ironwork throughout the cemetery. Treatment proposals for these stones are included in this study.

- Approximately $16,600 to create a brick walkway where the present eroded dirt path exists and to further enhance and stabilize the eastern pathway along the edge of the cemetery.

- Approximately $3,000 will be needed to remove the masses of vegetation along the north edge of the cemetery and install more historically appropriate materials that do not create safety issues.

- The chain at the southeast corner of the cemetery should be removed and bollards installed in its place. The cost of this work will be about $2,500.
We recommend that the cemetery be nominated to the National Register of Historic Places. This would further recognize the importance of the property to the community and reaffirm the University’s commitment to its long-term preservation and enhancement. This cost is a modest $2,000. Additional historical research could be conducted, at a cost of about $1,000.

The items listed as third priority are those that can be spread over five years - perhaps extending into 2011. These issues, however, are no less significant and will have a cost of about $95,000 (not reflecting inflation or continued deterioration). These costs are also similar to those previously outlined, but are able to be postponed short-term.

Continued conservation treatments amount to only $3,900. The University must realize that given the age of the monuments at the Old Athens Cemetery, there will be annual maintenance costs of perhaps $4,000.

The most significant cost will be the renovation of the turfgrass at the cemetery, anticipated to cost at least $30,000. The installation of a waterline for spot treatment will cost at least $3,000 and pre- and post-emergent herbicide treatments may cost $5,000.

While some funds may be identified from grants, the Cemetery is owned by the University and is a University resource. Many of the issues outlined here, such as pathways, lighting, and vandalism, are unique to the campus setting and the use the cemetery receives. Most of the monuments require immediately care and treatment largely because of either years of neglect, previous inappropriate treatments, or extensive vandalism.

Failure to act will not save the University of Georgia money – failure to act in a timely manner will significantly increase the costs and will significantly affect the resource.
Table of Contents

List of Figures vii

List of Tables ix

Introduction 1

- The Project 1
- Preservation Fundamentals 2
- The Cemetery Location 3
- The Setting and Context 4
- Factors Affecting the Landscape Character 8
- Recommendations 9

Historic Overview 11

- Historic Synopsis 11
- Recommendations 18

Access and Pedestrian Issues 19

- Circulation 19
- Pedestrian Access 19
- Universal Access 21
- Inappropriate Pathways 21
- Recommendations 22

Lighting and Security Issues 23

- Cemetery Lighting 23
- Vandalism 24
- Criminal Activities 26
- Paranormal/Supernatural Activities 26
- Recommendations 27

Cemetery Fixtures and Furnishings 29

- Iron Fences 29
- Other Lot Amenities 31
- Recommendations 32

Landscape Maintenance 33

- Staffing 33
- Cemetery Trees 34
- Shrubbery 41
- Turfgrass Issues 43
- Recommendations 47
Other Maintenance Issues 49
- Displaced Stones 49
- Signage 49
- Trash 52
- Monument Maintenance 52
- Recommendations 56

Priorities and Funding Levels 57
- Understanding Priorities 57
- Recommendations 57

Sources Cited 61

Appendix 1. Resume for Michael Trinkley 63

Appendix 2. Treatment Proposals 69

Appendix 3. Treatment Proposals for Recently Vandalized Stones 203
LIST OF FIGURES

Figure
1. View of the Old Athens Cemetery 1
2. Location of the cemetery on the University of Georgia north campus 4
3. View of Jackson Street showing buses in the immediate vicinity of the cemetery 5
4. View of the cemetery from the Main Library parking lot 5
5. Location of the Old Athens Cemetery 6
6. View of the Art Building towering over the cemetery 7
7. CMU wall along the north cemetery boundary 8
8. Statewide drought index 8
9. USDA plant hardiness zone for the Athens area 9
10. Approximate location of the 633 acre gift to the University Trustees in 1801 11
11. Probable original boundaries of the cemetery 12
12. The cemetery in 1909 13
13. Comparison of the 1936 and 1953 plans showing topography changes 14
14. 1947 plan showing the relocation of Magazine (Cemetery) Street 15
15. Plan of the Old Athens Cemetery from 1984 16
16. Western pathway showing erosion and damage to a brick tomb 20
17. Pathway adjacent to the eastern edge of the cemetery 21
18. Utility pole “street lamps” along the Baldwin Hall property line 23
19. Examples of vandalized stones 25
20. Homeless use of the cemetery 26
21. Photo by paranormal investigator showing night time conditions 27
22. Discarded candle in the cemetery 27
23. Fence parts should be collected and safely stored 29
24. Crumbling plot wall 30
25. Plot interior filled with debris 30
26. Inappropriate herbicide usage 33
27. Diseased cherry laurel that should be removed 35
28. Debris hidden under the magnolia 36
29. Trees planted too close together 37
30. Pruning problems in the cemetery 39
31. Other tree problems in the cemetery 40
32. Examples of massed vegetation that should be removed 41
33. Vegetation at the edge of the slope 42
34. Correct and incorrect shrubbery profiles 43
35. Mower damage to a stone 44
36. Mower damage to tree roots 44
37. Fire ant problem in the cemetery 46
38. Example of a broken stone 49
39. The only identification signage 50
40. Interpretative signage 50
41. Extensive evidence of trash 51
42. Inappropriate use of a modern marker 55
LIST OF TABLES

Table
1. Secretary of the Interior’s Standards for Preservation 2
2. Trees identified in the cemetery 35
3. ISA Certified Arborists in the Athens area 38
4. Maintenance schedule for centipedegrass 45
5. Comparison of different cleaning methods 54
6. Prioritization of recommendations 58
INTRODUCTION

The Project

In June 2006, Mr. Dexter Adams, Grounds Director with the University of Georgia in Athens, Georgia contacted Chicora Foundation and requested a “preservation plan” for the Old Athens cemetery (also known as the Jackson Street Cemetery or Jackson Street Burial Grounds). Specifically, Mr. Adams requested that the preservation plan also include treatment and management recommendations. He explained that care for the cemetery had recently been taken back over by the University, having previously been the responsibility of a citizens’ group, and that extensive damage was present throughout the cemetery.

Figure 1. View of the Old Athens Cemetery from Jackson Street, looking east.

A proposal addressing these concerns was submitted for the University later that same month and our proposal was accepted by the University of Georgia in early July.

Our proposal involved essentially three discrete tasks:

1. The creation of a synthesis of the cemetery’s history, using the extensive research that had been obtained by Ms. Janine Duncan, as well as other secondary sources (no primary document research was proposed).

2. The development of a preservation plan that would incorporate issues of not only maintenance of the landscape, but also security, pedestrian and vehicular access, vandalism, and maintenance of the cemetery’s hardscape. This plan would also review the cemetery’s master plan, evaluating its recommendations in light of sound preservation practices.

3. Develop treatment proposals for those monuments requiring attention and prioritize these treatments.

The work in the cemetery began on Monday, October 9 and continued through Wednesday, October 11, 2006. The field investigations were conducted by the senior author and Ms. Nicole Southerland.

During this on-site study we met with Mr. Dexter Adams, UGA Grounds Director; Mr. Mike Orr, UGA Landscape Manager; Mr. David Hale, UGA Design Manager; Mr. Scott Messer,
Table 1. Secretary of the Interior’s Standards for Preservation

1. A property will be used as it was historically, or be given a new use that maximizes the retention of distinctive materials, features, spaces, and spatial relationships. Where a treatment and use have not been identified, a property will be protected and, if necessary, stabilized until additional work may be undertaken.

2. The historic character of a property will be retained and preserved. The replacement of intact or repairable historic materials or alteration of features, spaces, and spatial relationships that characterize a property will be avoided.

3. Each property will be recognized as a physical record of its time, place, and use. Work needed to stabilize, consolidate, and conserve existing historic materials and features will be physically and visually compatible, identifiable upon close inspection, and properly documented for future research.

4. Changes to a property that have acquired historic significance in their own right will be retained and preserved.

5. Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize a property will be preserved.

6. The existing condition of historic features will be evaluated to determine the appropriate level of intervention needed. Where the severity of deterioration requires repair or limited replacement of a distinctive feature, the new material will match the old in composition, design, color, and texture.

7. Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.

8. Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.

Preservation Fundamentals

Preservation is not an especially difficult concept to grasp, although admittedly some work diligently to make it seem so. The fundamental concepts are well presented in the Secretary of the Interior’s Standards for Preservation (see Table 1).

This document reminds us – at least at a general level – of what we need to be thinking about as we begin a cemetery preservation plan. The University of Georgia has a Preservation Planner, but everyone with responsibilities for the care of this cemetery should be intimately familiar with the eight critical issues it outlines.

For example, all other factors being equal, a cemetery should be used as a cemetery – not to walk dogs, not as a play ground, and not as a park. And until we are able to do what needs to be done, it is our responsibility to make certain that the site is preserved – it must not be allowed to suffer damage under our watch.

We must work diligently to understand – and retain – the historic character of the cemetery. In other words, we must look at the...
INTRODUCTION

cemetery with a new vision and ask ourselves, “what gives this cemetery its unique, historical character?” Perhaps it is the landscape, the old and stately trees, the large box woods, the magnificent arborvitae. Perhaps it is the very large proportion of complex monuments, or the exceptional slate markers. Whatever it is, we become the guardians responsible for making certain those elements are protected and enhanced (whether they are particularly appealing to us or not).

Whatever conservation efforts are necessary must be done to the highest professional standards; these conservation efforts must be physically and visually compatible with the original materials; they must not seek to mislead the public into thinking that repairs are original work; and they must be documented for future generations. It is our responsibility as the steward of the property to retain a conservator appropriately trained and subscribing the Code of Ethics and Standards of Practice of the American Institute for Conservation (AIC).

The Secretary of the Interior reminds us that each and every cemetery has evolved and represents different styles and forms. It is our responsibility to care for all of these modifications and not seek to create a “Disneyland” version of the cemetery, tearing out features that don’t fit into our concept of what the cemetery “ought” to look like.

Likewise, we are reminded that there will be designs, monuments, and other features that characterize our cemetery – and we are responsible for identifying these items and ensuring their preservation. We must be circumspect in any modifications, ensuring that we are not destroying what we seek to protect.

Before acting, we are required as good and careful stewards to explore and evaluate the property, determining exactly what level of intervention – what level of conservation – what level of tree pruning -- is actually necessary. And where it is necessary to introduce new materials – perhaps a pathway – into the cemetery, we must do our best to make certain these new elements are not only absolutely necessary, but also match the old elements in composition, design, color, and texture. In other words, if the cemetery has brick pathways, we would be failing as good stewards if we allowed concrete pathways – especially if our only justification was because they were less expensive.

Where conservation treatments are necessary, the Secretary of the Interior tells us that they must be the gentlest possible. However you phrase it – less is more – think smart, not strong – we have an obligation to make certain that no harm comes to the resource while under our care. And again, one of the easiest ways to comply is to make certain that we retain a conservator subscribing to the ethics and standards of the American Institute for Conservation.

Finally, we must also recognize that the cemetery is not just a collection of monuments and the associated landscape – the cemetery is also an archaeological resource. We must be constantly thinking about how our efforts – whether to repair a monument, put in a parking lot, or resurface a path – will affect the archaeological resources – archaeological resources that just happen to be the remains of people buried at the cemetery by their loved ones.

The Cemetery Location

The Old Athens Cemetery is situated on the University of Georgia campus, south of the Athens business district (Figure 2). It is bounded to the east by Thomas Street and to the west by Jackson Street (from which it takes its alternate name, the Jackson Street Cemetery). To the south is Baldwin Hall, which today houses the Anthropology Department, while to the north is the Lamar Dodd School of Art. This location places the cemetery immediately to the
southeast of the historic core of the University campus and on the edge of the original Athens community. It is within Clark County (Athens-Clark County has a unified government) and is urban. The EPA Enviromapper reveals that there is only one nearby small quantity hazardous waste generator, although it is unlikely to directly impact the cemetery.

The Setting and Context

While surrounded by academic and university related facilities to the north, west, and south, to the east are apartment complexes, primarily for students. Beyond is the Oconee River, while to the southeast is Oconee Hill Cemetery, created in 1855 to replace the Old Athens Cemetery.

While much of the campus is densely occupied by classrooms and support structures, the cemetery provides a significant area of green space. Nevertheless, both Thomas and Jackson streets are major arteries. Baldwin Street to the south is identified as having a projected (2015) volume to capacity ratios between 1.0 and 1.29, while Broad Street to the north has a projected volume to capacity ratio of over 1.30. These
issues are addressed primarily by the Athens Transit System and University buses. Both have routes adjacent to the cemetery along Jackson Street, with stops in front of the cemetery (Figure 3).

Since the cemetery is no longer active, what is considered the main entrance is a pedestrian gate placed into the western third of the cemetery from Jackson Street (Figure 4). This is a narrow, recessed entrance that is nondescript and poorly marked. There is a retaining wall along Jackson Street, with the cemetery elevated perhaps 3 feet above the sidewalk.

There is a chained roadway entrance to the southern edge of the cemetery off the Baldwin Hall parking lot. This provides at least limited access by University vehicles for maintenance. There is, however, no roadway in this portion of the cemetery, only a worn soil pathway that is also used for pedestrian traffic that cuts through the cemetery along its lowest edge between the sidewalks associated with the Art School and Baldwin Hall. A series of benches have been located along this pathway, encouraging its use.

Other informal entrances include another cut-off from the Art School sidewalk through the eastern third of the cemetery to the retaining wall at Baldwin Hall. This is also a heavily worn dirt pathway.

These pathways, their impact to both the cemetery and its landscape, and their condition will be discussed at greater length in a following section. None, however, provide a particularly appropriate entrance to the cemetery.

Athens is situated in the Georgia Piedmont and the topography, as might be imagined, is rolling (Figure 5). The University campus is situated on a north-south tending hill, with elevations sloping down to the south, east, and west (toward the Oconee River). In the
cemetery itself elevations along Jackson Street are about 737 feet above mean sea level (AMSL), but drop toward Thomas Street to about 710 feet AMSL. Thomas Street itself, as a result of early twentieth century modifications, is about 30 feet lower than the cemetery.

The cemetery’s character is to some degree fixed by this sloping topography. We suspect that historically the most valuable and sought after plots were those closest to Jackson Street, not only because of its prominence as a main roadway, but also because of the higher elevations. Even today the more elaborate and expensive monuments are found in the western half of the cemetery.

The variety and texture of the three-dimensional monuments in the cemetery also help define its character. There is a rich variety that speaks to the wealth and prominence of Athens’ earliest citizens. A variety of box tombs are found. Fenced plots, once more numerous than today, are still defining features. Low brick walls surround other plots. Obelisks, although not common, are present. So, too, is a brick vault typical of early graveyards such as Savannah’s Colonial Park Cemetery.

The vegetation also helps define the cemetery. As explained previously, the cemetery is a small green space on the Athens campus. It is dominated by cedars and oaks, many with diameters in excess of 30 inches. They represent mature trees with at least a few dating almost to the beginning of the cemetery (for example, the 44 inch caliper red oak on the eastern part of the cemetery likely dates to at least 1830).

Shrubbery or other grave plantings on the site are very scarce. We noted several areas of iris within the cemetery, but little else. This, however, is typical of town cemeteries of this period and it is fortunate that the cemetery has not been modified with out of character modern plantings.

In fact, the Old Athens Cemetery evidences few characteristics other than those typically associated with either church or town/city graveyards. What remains is most
INTRODUCTION

suggestive of the very stark church grounds, where space was at a premium and pathways or ornamentation received little attention. While operating, these graveyards were almost always torn up from new burials and the graves were so imprecisely plotted that lines typically weaved across the grounds. A few trees and scattered, struggling shrubs were all of the expected plantings.

As control was wrested from the churches, town/city cemeteries occasionally evidenced more formal garden plantings. Plots became better defined by walls or fences. Individual families took over the planting of their lot, so landscape variety increased.

As we look over the Old Athens Cemetery some evidence of both styles can be found. Certainly there are remnants of well defined family plots with either brick walls or iron fencing. There are also clearly defined and laid out family groupings. Other evidence of the town/city cemetery – such as its landscaping and garden design – are far from clear. The absence of landscaping and the vagary of alignments is far more suggestive of the church graveyards (even though the Old Athens Cemetery was never associated with a church).

What is almost entirely missing is evidence of the Rural Cemetery movement. Beginning about 1831 (with the founding of Mount Auburn), an effort began to soften the harshness of the cemetery. The move from the city core to the suburbs was not only in response to the fear of contagion, but also an effort to remove the cemetery from the ambience of the city into a more garden-like setting. The design was picturesque, intended to resemble a natural garden, a place of reflection where the living and dead could commune. This, combined with the following lawn-park style is found in nearby Oconee Hill Cemetery, founded in 1855 to replace the Athens Cemetery.

The style and design typical of the town/city cemetery must be kept in mind as preservation efforts are begun. It is important that the Old Athens Cemetery retain its original historical character.

Today the peace and tranquility of the cemetery is compromised by its location adjacent to Jackson Street and the heavy use of this artery for mass transit. The vista to the east has been protected by the historic lowering of Thomas Street. Given the scale and setting of Baldwin Hall to the south, the vista in this direction is not objectionable. To the north, however, the construction of the art school and parking garage have created very discordant and intrusive settings (Figure 6). This is further aggravated by the CMU wall along the northern boundary of the cemetery (Figure 7). This wall is entirely out of context and is too low to offer any
mitigation of the properties beyond. Several of the trees along this northern border do, however, soften the impact.

Factors Affecting the Landscape Character

Athens is situated in the Georgia Piedmont, an area more rolling and hilly than the Blue Ridge in the furthest northern and northwestern reaches of the state. Most of the rocks of the Piedmont are gneiss and schist, with some marble and quartzite. Rivers and creeks form a well-defined drainage pattern flowing primarily southeastward. Clark County is part of the physiographic province known as the Winder Slope – a gently rolling area that is dissected by the headwaters of numerous streams with fairly deep and narrow stream valleys.

The soils in the cemetery are identified as Cecil sandy loams with 2-6% slopes. The soil survey also notes that the area is eroded – clearly evident from the movement of soil downslope, burying fences in some areas and exposing monument foundations in other areas.

Athens is characterized by a temperate climate with mild winters and warm summers, at least by modern standards. Winter temperatures range from the low 30s to the mid-40s, while the summer temperatures are in the high 80s. During the fall, winter, and spring the weather is controlled largely by the west to east motion of fronts and air masses. Air exchanges are less frequent in the summer and maritime tropical air can persist in the region for relatively long periods – giving rise to very warm, humid days.

Typically abundant precipitation is distributed fairly evenly throughout the year, with an average annual precipitation of about 50 inches. Figure 8, however, reveals considerable potential for drought. In fact a generally wet 2005 has been
followed by a dry 2006. The area has an average growing season of about 226 days, although this will vary by specific location, with low areas often evidencing late frosts. Figure 9 shows that all of Clark County is situated in Plant Hardiness Zone 7b, where the minimum temperatures are expected to be between 5 and 10°F. This is also an area where hot climate grasses, such as centipede, bermuda, and zoysia are typically successful.

Recommendations

All decisions regarding modifications, alterations, additions, or other actions affecting the Old Athens Cemetery should be carefully evaluated against the Secretary of the Interior’s Standards for Preservation.

The remaining historic fabric and context of the cemetery should be protected.

Much of the cemetery’s character derives from the evidence of a blend of town/city and churchyard styles. These elements have particular importance and should be closely guarded.
Historic Overview

Historic Synopsis

Detailed historic research of the Old Athens or Jackson Street Cemetery has been conducted by Janine L. Duncan (Duncan 2006). This discussion will simply provide a brief synopsis of this and several other accounts, most notably Cooper and McAninch (1984).

The Old Athens Cemetery is situated on property that was part of the original gift of 633 acres to the University of Georgia Trustees in 1801 by John Milledge (Figure 10). Gradually divided and sold by the Trustees, this became the University of Georgia campus as well as downtown Athens.

The earliest plan that Duncan (2006:34) could identify dates from around 1834 and identifies the cemetery only vaguely in relation to other campus structures and locations; it fails to provide boundaries or other indications of layout. There seems to be little doubt that the cemetery lacked both design and oversight, generally being considered by modern authors as common ground, open for the burial of all (at least all whites). This apparently quickly led to problems, with the University attempting to limit burials as early as 1824. By 1849 a committee of University Trustees “repaired to the burying ground and made an ocular examination of place” finding it in close proximity to several dwellings. A fence was subsequently placed around the cemetery (Cooper and McAninch 1984:1). This concern was likely based on the prevailing notion that burial grounds resulted in the spread of disease and miasma. In fact, the only reported accounts of the cemetery size date from end of the nineteenth century or beginning of the twentieth. A 1902 newspaper article, for example, comments that, “Between 1810 and 1920 UGA Trustees set aside a tract for purposes of a cemetery, vaguely defined between Broad, Jackson, Baldwin, and Thomas streets” (Duncan 2006:38, quoting an Athens Banner article, “Do
In fact, an 1870 map entitled, “A Portion of the City of Athens Showing the Proposed Plan for University Extension” fails to show the cemetery as University property (although the Baldwin Hall lots are colored to indicate ownership by the University). By 1905 the University of Georgia Trustees were describing the cemetery as being between 6 and 6½ acres. Duncan suggests that the cemetery would have originally encompassed a sizable area that includes Baldwin Hall to the south, all of the Art School to the north, and the southern half of the North Deck parking garage as well (Figure 11).

An 1874 map, which Duncan (2006:32) comments is the “preeminent map of Athens,” fails to specifically identify the cemetery, although it does identify “Cemetery St.” (later known as Magazine St.) that appears to be situated at the north edge of the graveyard’s modern boundary. The cemetery on this map is identified as lot 146 and it appears that the northern half of the graveyard has already succumbed to development (this is supported by at least one additional map, dated by Duncan to ca. 1850 that shows at least six lots to the north of Cemetery Street [Duncan 2006:33]). Meanwhile, Oconee Hills Cemetery was developed by the Town of Athens in 1856 as a replacement for the “overcrowded” Jackson Street cemetery (Cooper and McAninch 1984:1). In spite of the new cemetery, the town continued to find burials being conducted in the old cemetery and at least twice – in 1881 and again in 1892 – attempted to prohibit any additional burials unless a plot was already enclosed (Cooper and McAninch 1984:1).

Duncan has identified a range of early twentieth century maps that further reveal the loss of the northern half of the cemetery (Duncan 2006:23-31). As early as 1907 it is clear that the “Old Cemetery” was no longer viewed as extending north of Magazine Street. This same map also documents that the cemetery (at least by this time) did not extend all the way south to Baldwin Street. The same layout is shown in 1909 (Figure 12). Also in 1909, the Bird’s Eye View of Athens reveals the cemetery as wooded. Duncan (2006:26) also believes that a pathway from the intersection of Cemetery or Magazine Street, running southeastwardly to the middle of the southern boundary, can be seen. We are less certain, believing that this “pathway” may more likely be an area lacking large overstory trees and thus appearing like a pathway. A 1905 map entitled, “University of Georgia, Athens, Ga., Topography” shows the cemetery – clearly viewed as part of the University property – having the same boundaries as other maps of the period. The map also suggests that many of the older trees on the property today date to at least this period.
During the first decade of the twentieth century the roads surrounding the cemetery took on something approaching their modern appearance. Duncan provides detailed correspondence concerning the grading of the various streets by the Central of Georgia Railway as part of its placement of rail lines to the east. This included the grading of Thomas Street, creating the sharp drop that is today an issue in the preservation of the cemetery. A period newspaper account reported:

Rumor About Graves Being Broken Into by steam shovel on the excavation work of the Central Railroad not true; the graves of a few persons in the Old Cemetery were carefully removed by the City authorities. Thomas street is being lowered to the depth of 23 ft. in the rear [east] of the cemetery and that will leave the cemetery line on a high bank. To avoid erosion and exposure of graves, some three or four graves were opened and contents removed directly back of where they had been . . . the graves opened contained nothing but except a little rich earth and that was all that was disturbed during the excavation. The work is progressing rapidly now and the dirt is being hauled away and used in filling in the Carlton trestle and a portion of the [Oconee Hill] cemetery trestle (Athens, Ga. Weekly Banner, November 30, 1906; quoted in Duncan 2006:28-29).

The account is of interest for several reasons. Not only does it date the creation of this steep bank, but it also suggests that no concern was expressed at the time about the long-term implications of creating a shear drop to the street below. It also seems improbable that only “rich earth” was recovered and this, taken together with the total number of removed burials being uncertain, suggests that the railroad – typical of the period – exhibited little concern for the dead.

The work also apparently included the construction of a line that cut off the southeastern corner of the cemetery. It is uncertain if this line was constructed and if it was, when it was subsequently abandoned (since no such line is present today) (see Duncan 2006:23, Figure 15).

Additional work was conducted as late as 1915 (Duncan 2006:31) although it is unclear if this subsequent work produced any significant modifications.

It seems likely that at least some of these activities were the result of Chancellor Walter B. Hill’s efforts to create a grand vision for the campus. While Hill died suddenly in 1905, the
plans were apparently continued by Acting Chancellor David C. Barrow and Duncan (2006:45-49) explores the efforts made by the University to use the cemetery grounds for various developments – termed in a 1905 letter as the “reoccupation of the cemetery ground” (quoted in Duncan 2006:45). The Hill and Barrow plan would have used the cemetery for the rerouting of Jackson Street – hardly a particularly noble cause. Moreover it was necessary in order to “give it a more graceful line and easy grade . . . and to leave the University grounds unbroken.” Hill himself seems to have worried less about the virtue of his cause as how it would appear, commenting “we must, of course, avoid any seeming indifference to the sentiments of the living” (quoted in Duncan 2006:47).

A variety of activities took place in the 1930s and 1940s, not the least of which was the construction of what would become Baldwin Hall. Duncan (2006:21, Figure 14) illustrates a plan sheet for this construction, dating ca. 1936. It illustrates at least one grave about 60 feet from the northwest corner of the building. Duncan suggests this grave was moved, although there is no compelling evidence to suggest removal. Moreover, when Duncan’s Figure 14 is compared to later contour maps of the area (Figure 13) there seems to be little doubt that the construction dramatically changed the landscape. It seems equally certain that the construction on this property destroyed burials – at least this is a reasonable conclusion barring evidence of disinterment and removal.

Another major activity was the 1932 effort by the Elijah Clarke Chapter of the National Society of Daughters of the American Revolution to repair stones in the cemetery (Cooper and McAninch 1984:2). It was at this time that Redwine (Fickett 1961) produced an inventory of the cemetery which she annotated with the repairs made (such as reset, cracks repaired, slab replaced and cemented, repaired, tomb reassembled & foundation rebuilt, new foundation, and so forth). It is likely during this period of repairs that we see the extensive use of Portland cement to reset stones, infill damage,

![Figure 13](image-url). On the left is a ca. 1936 plan showing topography (and a single burial) prior to the construction of Baldwin Hall (adapted from Duncan 2006:Figure 14). On the right is the 1952 Plan of Existing Campus. Note modification of contours adjacent to and in the vicinity of Baldwin Hall. Note also the remnant evidence of Magazine Street extending between Jackson Street at the bottom and Thomas Street at the top.
By 1947 Magazine Street was rerouted to circulate behind the Chemistry Annex (Building 31) and between the Business School Annex (Building 16) and the Library Annex (Building 17), no longer connecting to Thomas Street (Figure 14). What was left, however, was the cut excavated by the Central Georgia Railroad in the first decade of the 1900s (see Figure 13). Prior to the development of these annex buildings, it appears that the eastern half of the cemetery was used for parking, based on the 1945 “General Landscape Plan of the University of Georgia – North Campus.”

There is little doubt that the various annex buildings and parking facilities, combined with the private residences along Jackson Street, all were built on the original cemetery – and almost certainly disturbed graves with utility lines, foundations, and similar activities.

The use of the cemetery for parking, however, continued for a number of years. As previously mentioned, it is first shown on the 1945 map, but continues to be shown – and even expands – on 1958, 1961, and 1965 plans.

Duncan (2006:22) notes that, “the theory that construction of Visual Arts disturbing burials is likely to be incorrect.” She bases this on the belief that the earlier private dwellings would have already destroyed the graves. We do not agree. The level of damage resulting from residential construction, with limited foundations and utility lines, is dramatically less than the damage resulting from modern construction of large concrete structures with deep footers and extensive footprints. This is seen repeatedly in urban archaeology where periods of building and demolition through the eighteenth and nineteenth centuries leave distinct – and decipherable – records, only to be severely damaged or destroyed by modern construction. Moreover, the damage from the residential construction was limited to the area adjacent to Jackson Street, while the Visual Arts building, the various campus annex buildings, and the parking facilities, expanded to cover virtually the entire cemetery.

Duncan also suggests that the cemetery boundaries were essentially unaltered during the 1960s. This is likely correct, or at least essentially so. She does refer to a “WWII-era macadam parking” area, still reportedly visible in a 1963 aerial. While this parking may have originated in the early 1940s, it was clearly retained well into the 1960s.

About 1962 there was perhaps a second episode of repair and renovation – although the extent is far less well documented than the DAR
Figure 15. Plan of the Old Athens Cemetery from Cooper and McAninch (1984).
HISTORIC OVERVIEW

efforts 30 years earlier. Duncan (2006:49) notes that an April 22, 1962 Athens, Ga. *Banner-Herald* article reported that the Athens Historic Society was preparing to landscape the cemetery and “secure the surviving stones.”

By the early 1980s there was again public concern regarding the University’s perceived lack of sensitivity toward the cemetery. For its part, a University representative held that, “the University mows the cemetery grass and occasionally cleans up the litter, but feels it cannot spend tax money on property it does not own” (quoted in Duncan 2006:49). Curiously, while the University was reluctant to spend money on property it did not own, there was little reluctance to convert it into a parking deck (just as there had been little reluctance in the past to build other structures or parking lots on the graveyard). In an effort to preserve the cemetery, what has been called the Friends of Old Athens Cemetery Foundation, Inc. was formed in 1981. The charter for this organization, however, indicates that the name was Old Athens Cemetery Foundation, Inc. This organization apparently took over maintenance activities and Cooper and McAninch (1984:2) report that the Friends acted in concert with the University to maintain the cemetery. Although Duncan provides little history of the organization there is evidence that it planted at least some of the trees found on the property today and also arranged to have an additional round of conservation treatments (consisting primarily of blind pin repairs using threaded nylon with a few simple epoxy repairs). The Foundation was dissolved in July 2005, with a small endowment being turned over to the University. At the time of the Foundation’s dissolution its CEO/CFO was Ms. Patricia Cooper and the Secretary was Bonnie O’Brien.

Perhaps the most notable undertaking of Cooper and McAninch (1984) was the production of a relatively detailed cemetery plan. Although regrettably recent, it provides at least some time depth for the portion of the graveyard that still exists. The authors also made an effort to document a broad range of features, including pathways, trees, and utility poles, as well as the monuments themselves. Even fieldstones are included on the plot, although it is likely that after nearly 200 years relatively few remain and were in place. The road at the eastern edge of the cemetery represents the remnants of the previously discussed roadway and parking lot. The map also documents a wall at the eastern boundary of the cemetery, although it is uncertain if this was laid to mark the boundary or was intended to help retain the cemetery from erosion onto Thomas Street.

Since once again acquiring control of the cemetery, the University has conducted a number of studies. In 2002, and again in 2006, students in the Anthropology Department under the direction of Dr. Erv Garrison have conducted geophysical studies of several areas in the cemetery (Duncan 2006:57-59 provides a brief review of the 2002 work and Blair 2006 summarizes more recent studies). Duncan (2006) has assembled a vast and impressive set of historic documents and has begun the laborious process of documenting the individual monuments present. The cemetery has been surveyed and entered into the University’s GIS database. And most recently, Chicora was contracted for the preparation of this preservation assessment.

What remains, however, is a little over a third of what was present originally (of the original 6 acres about 2½ acres remain) – at least in terms of acreage. Portions of the cemetery to the north and south have been covered over or destroyed by various construction episodes. Given the length of time the cemetery was available (approximately 90 years, although probably intensively used for 50), it is possible that the cemetery contained upwards of 5,000 burials.
Recommendations

The level of historic documentation for the cemetery is more than adequate for preservation efforts. In fact, it is clearly sufficient to justify the nomination of the site to the National Register under Criterion C (distinctive characteristics) since it typifies the town/city and churchyard design. With additional historic research the cemetery may also be eligible under Criterion B (significant persons). Finally, further research by the Anthropology Department should be capable of producing data to justify nominating the cemetery under Criterion D (information potential).

An effort should be made to identify and examine in detail records from the twentieth century (such as the DAR and Foundation) that may help explain previous restoration efforts.

The local newspapers likely provide a rich resource concerning activities at the cemetery. These have not been adequately exploited and an effort could be made to scan the papers for pertinent information.
ACCESS AND PEDESTRIAN ISSUES

Circulation

There is only one vehicular access point for the Old Athens Cemetery – a chained entrance off the Baldwin Hall parking lot at the southeast edge of the cemetery. The dirt pathway in this area follows a pre-existing parking lot or road, but appears nevertheless to be on and in the cemetery.

Historically the only access point was Cemetery Road that cut east-west through the center of the cemetery, connecting Jackson and Thomas streets. Town/city cemeteries rarely had drives or roads through them and coffins were simply walked from the horse drawn hearse to the grave. This was partially a social custom, but was largely mandated by the number of graves found in these cemeteries and the lack of space for roadways (or frequently even pathways).

Although there is little that can be done to make the cemetery more accessible for maintenance operations, we do recommend that the existing chain be replaced with lockable bollards. This would improve pedestrian access (discussed below) and provide a neater appearance. This cost is estimated at about $2,500 (assuming three will be needed).

In addition, it is important that maintenance crews be instructed to minimize vehicular movement within the cemetery. The use of trucks will compact the soil and needlessly endanger stones and other monuments (many of which are difficult to see). Critical operations include bucket trucks for tree inspections or pruning and vehicles associated with conservation. Routine maintenance operations should avoid the use of vehicles in the cemetery. Absolutely no traffic should be allowed in wet weather.

Pedestrian Access

Since the cemetery is not fenced, pedestrians have access on all four sides. Formal or de facto entrances, however, are limited to five locations.

The main entrance to the cemetery is on Jackson Street and consists of an introduced iron gate and a set of steps up into the cemetery. While providing entrance, there is no pathway into the cemetery from this gate and the limited wear evidenced by the grass suggests that it is rarely used.

There are two informal routes through the cemetery, both roughly north-south. The more western pathway originates in the north at the end of the CMU wall separating the cemetery from the Art Building. This pathway, about 3-4 feet in width, winds southwestwardly through the cemetery, terminating at a wall into the Baldwin Hall property. There is about a 4-foot drop from the cemetery onto the Baldwin Hall lot and pedestrians are currently just jumping off the wall.

This particular pathway has some antiquity (although it most be considered modern in that it has no historical association with the cemetery). It appears to be heavily used, with considerable erosion (in some areas about 8-inches). The pathway also crosses at least one brick grave, causing extensive damage to the historic fabric.

The second route also begins at the end of the CMU wall between the cemetery and Art Building and travels southwardly along the eastern edge of the cemetery. It terminates at the chained drive into the cemetery at the corner of the Baldwin Hall parking lot.
This pathway is a little more formal, bordered to the east by landscape timbers, and is also broader, being about 10 feet in width. It appears to follow the earlier roadway/parking area that was at one time located on the eastern portion of the cemetery. Erosion in this area is less severe, largely because it is situated on a more level area.

Ideally the western pathway would be eliminated, thus minimizing damage to the landscape, helping to preserve the tombs and graves, and reducing overall maintenance costs. We are told, however, that this is not feasible since the path has been so long in use.

Therefore we recommend that this pathway be converted from heavily eroded soil to laid brick. This will necessitate filling in the eroded area, grading, and laying a 4-foot wide brick pathway. Brick is suggested since it will blend with the cemetery and provide a long-term stable pathway.

The existing route should be followed as closely as possible, with only gradual deviations to avoid known tombs (evidenced in the soil). Grading should be limited to the upper 6-10 inches, thereby minimizing any archaeological involvement. The creation of the pathway, however, is an opportunity for the Anthropology Department to become involved in the overall project.

At the southern terminus we recommend that steps be installed, making this a formal, and safe, route.

The cost for this work is estimated to be about $14,500. The cost would increase if a ramp, rather than stairs, were installed at the Baldwin Hall lot for universal access (see below).

The eastern pathway, because it is in an area of reduced slope and the ground is likely more compact from previous use, requires less attention. In this area we recommend that the pathway be infilled with mulch. This would maintain the soft appearance of the pathway and minimize long-term maintenance costs. We estimate that this work would cost approximately $2,100.
Universal Access

At the present time the cemetery does not provide universal access or comply with the ADA. Whether this is an issue must be determined by the University. In general, the ADA or the Rehabilitation Act of 1973 is not interpreted to apply to cemeteries by the Department of Justice.

With the addition of brick paving to the western pathway, some degree of universal access could be provided (the mulched pathway would not be compliant), although it would require that a ramp be installed at the Baldwin Hall access point, rather than stairs. In addition, there are only stairs leading from the Art Building sidewalk eastern, down to Taylor Street (although the sidewalk is ramped to the west, toward Jackson Street).

Regardless, it seems appropriate to make such a modification only if there is a clearly documented need. We are not certain that there is a demand adequate to justify either the expense or the affect to the historic fabric (although admittedly the affect to the historic fabric would be minimal and easily integrated).

The University should evaluate the appropriateness of ramped access rather than stairs prior to implementing the recommendations above.

Inappropriate Pathways

The University is fortunate that the cemetery has low use and there are no more than the two previously discussed pathways. As a result there are no inappropriate cut-throughs and the resulting damage to the landscape. The University, however, should be prepared should there be signs of additional pathways.

One approach is to install signage asking students not to damage the plantings and replant the damaged areas. These pedestrian pathways are like litter – if ignored they will only get worse. It is important to confront the problem directly by installing signage and replanting.

Another approach is the installation of temporary barriers. Sometimes this is used in conjunction with replanting, in order to allow the vegetation time to establish or recover.

If these processes do not work we recommend selecting plantings, such as yucca, osage orange (although a tree, they can be
planted close together and pruned to promote an almost invincible hedge), or hollies that will deter pedestrian assess. All are also historically appropriate and could blend with the existing landscape.

Recommendations

The vehicular entrance off the Baldwin Hall parking lot should have the chain removed and bollards installed. This will create a more pedestrian friendly access point. The cost will be approximately $2,500.

The Grounds Department should establish and enforce provisions to prevent damage from vehicular traffic. Vehicles should be limited to only critical needs (such as bucket trucks for pruning) and should never be allowed during wet weather when rutting is possible.

Because of erosion and damage to brick tombs, the western pathway should be leveled and a brick path be installed. The southern terminus should have stairs installed, although a ramped access is possible if universal access is an issue. We estimate this cost to be approximately $14,500.

Prior to step construction the University should evaluate the need and appropriateness to comply with the ADA to provide universal access using ramps.

The eastern pathway is in better condition, but we recommend infilling with mulch to help stabilize and soften its appearance. This cost is estimated to be about $2,100.

The University must be vigilant to prevent additional pathways from being created since they will damage the landscape, cause erosion, and possibly expose additional graves.
LIGHTING AND SECURITY ISSUES

Cemetery Lighting

The cemetery would not have been lighted historically and so the absence of lighting today is historically accurate. It is not, however, necessarily wise or in the cemetery’s best interests.

The only lighting that is present comes from two wood utility poles with High pressure sodium vapor lamps directed into the Baldwin Hall parking and walkway areas on the south. To the north is an equally sparse assortment of globe lamps designed to light the pathway along the side of the Art Building. There is no lighting along Jackson Street.

As a result, the Old Athens Cemetery is virtually unlit and this presents a variety of very serious problems, including a high rate of vandalism, the potential for crimes against persons (with the associated liability to the University), and a very significant use of the cemetery by advocates of the paranormal or supernatural.

The value of the lighting present is further diluted by the abundant clumps of shrubbery that provide ideal hiding locations. These are especially troubling along the northern and eastern edges of the cemetery.

We recommend that the University immediately install additional lighting in – and around – the cemetery. We do not believe that anything is gained by selecting “historic” lighting fixtures. As previously explained, historically there would have been no lamps in the cemetery. Their need is an entirely twentieth century phenomena. Appropriate lighting should blend with a campus-wide program and should minimize upward light pollution. Vandal and tamper resistant lamps would be a good choice for this setting.

We recommend lighting along the western and eastern pathways at a minimum, perhaps with additional lighting in the western half of the cemetery, closer to Jackson Street. We estimate the cost at about $9,000.

The utilities for these fixtures should be buried as shallowly as permitted by the
applicable code so as to minimize disturbance to archaeological remains. At depths of 24 inches it is unlikely that any human remains will be impacted; it may nevertheless be appropriate to have the excavations monitored by an archaeologist. This provides an opportunity for involvement by the University’s Anthropology Department.

Vandalism

It is painfully clear that the cemetery has gone through episodes of significant vandalism. Today there are few, if any stones, that don’t evidence damage that is almost certainly the result of vandalism. We have recently been informed that additional vandalism was identified in the cemetery after Halloween.

The ultimate object of cemetery preservation is not to eliminate all vandalism since that is not realistic. It is important to maintain a balance between vandalism reduction and the historic context, maintenance, and aesthetics. The goal should be to reduce unnecessary expenses by using a combination of social and physical strategies.

There is also no single universal solution since vandalism has a variety of causes. At the Old Athens Cemetery some vandalism is likely linked to at-home football games and the resulting excessive use of alcohol. Other damage is very likely linked to the cemetery’s attraction to those believing in the paranormal. Some damage is also the probable result of a lack of understanding and/or common sense.

The program we advocate is perhaps the most difficult to implement since it is integrated and requires planning. The value of the resource, however, demands this level of effort. The financial costs of vandalism are significant – repairs of stones will often cost $1,000 or more per stone – and the loss to the historic fabric is incalculable. Vandalism at this site is in an entirely different category than that typically encountered by university officials.

Social Strategies

There are four critical components of social enforcement.

Publicity. The University must have a clearly developed policy concerning cemetery vandalism. When it occurs it must be immediately reported – and investigated – by the police. There must be a standing reward policy commensurate with the value of the cemetery and the damage done. We suggest a reward for the arrest and conviction of between $500 and $1,000. Every time there is damage in the cemetery, the University should develop an article for the local papers – both public and student. This should be part of a broad education program to let students – and the public – know the costs associated with the vandalism, how these costs affect them (tuition and tax increases), and what they can do (advertise the reward). The University must also be prepared to aggressively prosecute students, alumni, or the public – the University must protect the historic fabric of the cemetery.

Education. The first line of education must be the University staff – the University must be trained to anticipate and prevent vandalism. Halloween is a time typically associated with vandalism, weekends are typically associated with student intoxication, football games are times associated with a losing team, too much alcohol, and opportunity. Each demands additional vigilance. Public education should focus on preventable and avoidable acts of incidental vandalism – it is not likely that

1 A study of 12,651 college students conducted in 1991 by the Towson University Campus Violence Prevention Center found that more than six out of ten students who destroyed or damaged property on campuses reported they were drunk at the time. A 1991 study of 4,845 students from 68 colleges and universities found that one in ten students had engaged in vandalism due to alcohol in the past year. Nearly one-quarter of heavy drinking students had engaged in vandalism.
deliberate vandalism can be reduced significantly by public appeals and education.

Rule Enforcement. Rules must be realistic and enforceable; they should be clearly presented to visitors (we recommend more concerning this under signage). There must be a perceived presence of authority. It is critical that the Campus Police begin sweeps through the cemetery on a daily and nightly basis — with greater emphasis on those times when it is most likely to have problems. Maintenance crews also must make themselves visible in the cemetery. There must also be financial incentive and reward programs. We have previously mentioned rewards for reporting vandalism. A complementary program would be to develop a program that encourages help in keeping vandalism costs down through awareness of the personal costs of the problem.

Cooperation. Those adjacent to the cemetery should be enlisted to help prevent problems. This is a modified “Neighborhood Watch” program where individuals (faculty, staff, and students) who might be working late or walking through the cemetery are asked to pay particular attention to any activities. It is far better to have vandalism reported in progress, rather than have it discovered afterwards.

Physical Strategies

There are a variety of physical strategies, although most fall into two broad categories — hardening targets or removing secrecy. While many of these approaches are both appropriate and successful for non-historic assets, relatively few seem to work well in cemeteries. It is, for example, difficult to “harden” a headstone or “make it easy to fix” a broken ledger.

Lighting. Adding security lighting does, however, limit the veil of secrecy that vandals (and other criminals) desire. It also encourages greater safe use by the public and this, too, discourages improper behavior.

Police and Staff Patrols. Previously discussed under “Rule Enforcement,” it is critical that the University have a much higher visibility in the cemetery than is currently the case. During our two-day assessment we failed to see a campus or city police officer or any maintenance in the cemetery or even in close proximity. In spite of the heavy litter in the cemetery, the litter patrol individual covered only the concrete sidewalk on Jackson Street and along the edge of the Art Building. This must change – there must a much higher degree of police and staff visibility in the cemetery.
Criminal Activities

We have examined the on-line logs of the University of Georgia Police Department and found – during a six year period – only five occasions where the cemetery has been mentioned in a report.

In 2001 (01-1601) the cemetery’s historical marker was stolen. This report is particularly telling since no one apparently noticed it missing for a week.

There are two reports from 2005. One (05-1054) involves the issuance of a “barring notice” at 6:55am. The other (05-1801) involves “found property” in the cemetery.

In 2006, however, a more serious criminal activity was reported (06-2321). At 12:24am a male student reported an armed robbery in the cemetery. The record further reveals that two students, Richard Gerard Donnellan and Rajesh Chandarkant Joshi were found in possession of firearms and arrested.

The final item, also in 2006, involves the damage to six headstones between October 30 and November 5 (06-2348). While no value was assigned to this damage, repair will likely cost approximately $6,000 – so this is a major crime against the State of Georgia.

We believe the infrequency of cemetery related reports has far more to do with the property rarely being patrolled than with its peaceful nature. It seems likely that if there were a more obvious police presence, there would be more reports of activities in the cemetery.

Several informants complained to us about not only a homeless problem in the cemetery, with the benches frequently being used, but also about an active drug ring operating out of the eastern edge of the cemetery.

These issues present a significant liability to the University. They also discourage the appropriate use of the cemetery.

Paranormal/Supernatural Issues

The Old Athens Cemetery appears to attract a broad range of people believing in the paranormal. A quick internet search reveals the cemetery listed on at least three sites and having even attracted a local newspaper article (Athens Banner-Herald, October 31, 2004). Even the University, unwisely, has given attention to this subject (http://www.uga.edu/gm/399/FrontBones.html).

There are several consequences of this fascination, none in the best interests of the cemetery or its long-term preservation. First, it attracts a group desirous of using the cemetery at night, leading to potential unintended damage and presenting considerable liability to the University. Second, some of the resulting

2 The Northeast Georgia Homeless Coalition estimates that 246 adults and 27 children are currently homeless in the Athens.
activities damage stones through improper use of candles.

In addition, any unregulated and unsupervised use of the cemetery - whether to investigate “orbs” and “cold spots” or to conduct “séances” detracts from the dignity and historical integrity of the setting. It also promotes a use that creates a liability for University.

We believe that the best way to deal with this issue is through signage which restricts access to the cemetery to daylight hours, accompanied by diligent police patrols and appropriate intervention. Individuals using the facility after dark should be directed to vacate the premises. Failure to do so should be handled as other trespass is routinely handled by the Campus Police.

Recommendations

Additional lighting should be added to the cemetery, focusing on the two pathways and Jackson Street. The anticipated cost is approximately $9,000.

The University should develop an integrated vandalism reduction policy for the cemetery. Minimal components should include, in addition to lighting, publicity education, and aggressive enforcement. It is critical that police patrols be implemented, with additional surveillance during holidays, weekends, and in-town football games.

The University should discourage paranormal investigations, séances, and similar night-time
activities at the cemetery. This can be accomplished by appropriate signage and consistent police enforcement of trespass provisions.
CEMETERY FIXTURES AND FURNISHINGS

Iron Fences

There are six plots that are enclosed with historic fences. These are significant resources, characteristic of the Rural Cemetery Movement, and are critical components of the cemetery landscape. Consequently, they deserve special care and attention.

These fences, however, are in various states of deterioration and all require immediate attention. Sections are missing, posts are broken or are no longer solidly set, finials are broken or missing, supports are no longer stable, and there is much corrosion. Details of each fence are included in Appendix 2 (plots 3, 6, 11, 37, 44, and 58) and these treatment proposals should be consulted for specific information.

At a general level, however, we observed two very significant problems that can be quickly resolved.

Lose Elements

There were several fences (Figure 23 illustrates one example) where fence parts have been allowed to simply lay in or around the plot. This invites theft or souvenir collecting, resulting in the loss of historic fabric. This, in fact, is quite noticeable and many parts are no longer present – making it impossible to fully repair these fences.

The University should collect, label, and store all such individual parts until such time as repairs can be made – the individual parts should never be allowed to remain loose in or around the plots. If the University has no facility where the parts can be securely stored, then it would also be acceptable to use woven stainless steel wire to attach the parts discreetly to their respective fences – securing the parts on-site.

Painting

While repairs are needed, the primary recommendation is that the fences be painted – this will improve their appearance and will reduce future conservation problems.

Absent historic documentation that suggests otherwise, flat or semi-gloss black is an appropriate fence color. The use of gloss paint is inappropriate and should be avoided.

Sandblasting the ironwork should be prohibited – it is unnecessarily aggressive, has the potential to damage surrounding stone, and
can result in unnecessary lead contamination. An alternative to such an approach is minimal wire brushing to release obvious scale and corrosion, then the use of a rust converter as a primer. Of the three that were successfully tested by the Canadian Conservation Institute, Rust-Oleum’s Rust Reformer is the least expensive and most readily available. We recommend two coats of the Rust Reformer. These can be applied over mechanically stable corrosion and the product does an excellent job of converting the corrosion into a stable base for a top coat of alkyd paint. A single coat is adequate and it should not be applied thickly, as thick coats hide detail, cure poorly, and will prematurely fail.

All painting should be by brush – no sprayers should be used since they allow drift onto nearby stones. Tarps should be used to protect vegetation and adjacent stones from splatter.

This maintenance program will significantly improve the appearance of the ironwork in the cemetery and will help prevent additional corrosion and deterioration of the various fence components. This work should receive a very high priority.

Stone and Brick Walls

About an equal number of plots have brick or granite curbing. These, too, are in a generally dilapidated condition (Figure 24).
Brick walls are crumbling or, in some cases, nearly missing. Granite walls are splayed and out of alignment. In one case the interior of the plot has been used as a receptacle for random parts collected from throughout the cemetery (Figure 25).

These problems seriously detract from the cemetery’s appearance and historic integrity. We recommend immediate intervention.

The treatment of brick walls follows a relatively well defined process:

- If original bonding patterns can be detected, these should be maintained. If insufficient wall height remains to determine the original bonding pattern, then a running bond should be used.

- In all cases the original wall width should be determined. In some cases this may require removal of rubble to a below grade foundation. In general wall widths will likely be either 9 or 13-inches as these are typical.

- Where the original wall height can no longer be determined, it is appropriate to extend the wall to a height of 3-4 courses. This will provide a general impression of the wall. Where finishing details (such as stone capping) are not entirely preserved, those present should be replaced, but it is not necessary to attempt to duplicate missing elements.

- It will be necessary to remove rubble in any event since as much intact brick as possible should be salvaged. This will require complete cleaning of all adhering mortar. It is unlikely that adequate brick will be available (much will be broken or simply missing). Replacement brick must match the original as closely as possible in size and color.

- An appropriate mortar is a 1:2 mix of natural hydraulic lime (NHL) 3.5 and sand. While this could be field prepared, we strongly recommend a bagged mix such as “Mix-n-Go” offered by Virginia Lime Works (434-929-8113). This ensures consistency and avoids the problems of field formulation. Under no circumstance should any Portland cement mortar mix be allowed. Such mixes are entirely too hard for the brick and will cause extensive long-term damage.

- This mix, albeit in a much drier condition, is also suitable for repointing of walls as necessary. All repointing should be by pointing trowel (no bag or hydraulic application is allowed) sized to the width of the joint. We are happy to provide additional specifications for pointing.

- All mortar joints should be flush and, when thumbprint hard, beaten with a churn brush to produce a weathered finish. This blends the joint into the existing wall. No V, struck, or grapevine joints are acceptable.

Where there are granite block walls remediation involves:

- Leveling and plumbing all blocks.

- Ensuring that joints are tight (typically with a gap no greater than 1/8-inch).

- Determining that all walls are squared.

Other Lot Amenities

There are relatively few other lot amenities. There are scattered benches in the cemetery. All have been refurbished and today are in satisfactory to good condition.

Their placement suggests that the University has already made the determination
that benches are appropriate. It is important that these benches not be taken over by vagrants since this will deter students and the general public from using and enjoying the cemetery.

Recommendations

Loose ironwork in the cemetery should either be collected, labeled by plot, and stored securely or should – at a minimum – be secured to other ironwork on the plot using woven stainless steel wire.

The University should immediately implement – or fund – a maintenance program for the iron fencing on the cemetery that consists – minimally – of painting the fences. More detailed conservation efforts are outlined in the treatment proposals found in Appendix 2.

The University should immediately implement – or fund – a similar maintenance program for the brick and granite walls. This will involve extensive repair and rebuilding.
LANDSCAPE MAINTENANCE

Staffing

The Old Athens Cemetery is cared for by the University’s Grounds Department. While this department brings to bear considerable skill and expertise, they also appear to be stretched very thin. As a result, it appears that the Cemetery is receiving minimal attention. Moreover, actions are implemented to further minimize the labor required.

For example, rather than use nylon trimmers adjacent to walls and fences, the Grounds Department is spraying the vegetation with a non-selective herbicide. This creates brown “kill zones” that not only look very unattractive, but further the problems with erosion and detract from the historical integrity of the landscape. During our visit a variety of landscape problems were identified that can be traced back to a lack of staff to adequately and appropriately care for the cemetery.

In addition, it is important to note that cemeteries require a different level of care than most university properties. Cemeteries are not parks, commons, or lawn areas around campus buildings. Cemeteries are historic sites, they are sacred spots, they are outdoor museums – and they require a far higher and more sophisticated level of care and intervention than most campus landscapes.

Four issues are of critical importance: the level of staffing provided, the level of training provided, the quality of supervision, and continuity in the labor force.

Level of Staffing

Our general recommendation is that most cemeteries require 3 full-time maintenance staff for every 10 acres. Thus, the 2 acre Old Athens Cemetery is likely to require a full-time staffing commitment of 0.6 person – or an individual assigned to the cemetery half-days, with occasional additional assistance.

The staffing level, obviously, will fluctuate. During some periods the work load will be limited. At other times the individual will not be able to keep up without additional assistance.

This should serve as a guide to the University for staffing needs. If the Grounds...
Department does not have adequate staff, then clearly additional funding is needed to provide the staffing to appropriately care for the cemetery.

Staff Training

Sadly, professional training in the landscape industry, at least among the public, is undervalued. This contributes to rapid turn-over and inappropriate maintenance activities.

In 2005 the Associated Landscape Contractors of America (ALCA) and the Professional Lawn Care Association of America (PLCAA) merged to form the Professional Landcare Network (PLANET). This organization offers three certification programs that should be requirements for all of the cemetery technician-level staff.

The first is the Certified Landscape Technician - Exterior. The exam for this certification is a hands-on field test and candidates can be tested in Installation, Maintenance, or Irrigation. Technicians at Old Athens Cemetery should be certified in Maintenance. This would establish credentials by meeting international standards for safe and effective operation of machinery and demonstrating a thorough understanding of all facets of the position.

The second is Certified Turfgrass Professional – a comprehensive study of both warm and cool-season turfgrasses developed by the University of Georgia Center for Continuing Education. Certification in this area demonstrates a mastery of weed, insect and disease identification/control, as well as diagnosis of common turfgrass problems. The material supports Integrated Pest Management concepts and pesticide safety - significantly reducing the University’s liability for operations.

The third is Certified Ornamental Landscape Professional. This certification emphasizes tree and shrub maintenance procedures with candidates concentrating on landscape trees and ornamental woody plant physiology, health care management, and establishment.

The Georgia Center for Urban Agriculture (operated out of the University of Georgia College of Agricultural and Environmental Science) offers a very similar Georgia Certified Landscape Professional Exam (http://apps.caes.uga.edu/urbanag/GCLP/index.cfm).

There is a wealth of readily available training available to the staff of the Grounds Department. We encourage the Grounds Department, if it is not already, to participate in these programs.

The Quality of Supervision

Regardless of the credentials or certification, the nature of cemetery maintenance requires that the technicians are well supervised and are held accountable for their performance. It is especially important, therefore, that the supervisory personnel assigned to the cemetery be acquainted with the specific needs and requirements of the cemetery setting.

Continuity of the Staff

Maintaining the continuity of a maintenance staff with a commitment to the preservation of a historic cemetery is critical. It not only serves to help ensure the highest possible quality of care, but also allows the specialized knowledge that accrues to be transferred to new staff members over time.

Cemetery Trees

Selection Issues

Relatively few of the trees in the cemetery have been intentionally selected. Most are mature – perhaps 100 or more years old – and date far back into the cemetery’s history.
The few thought to have been planted are primarily young oaks introduced by the Old Athens Cemetery Foundation.

The trees present in the cemetery, and their size range, is provided in Table 2. The majority (74% by count and 79% based on total inches) are oaks typical of the region. Cemeteries, in general, have historically been dominated by large deciduous trees and these oaks are entirely appropriate for the setting.

The next most common are cedars, which are also very common in the historic cemetery landscape, likely because of the accessibility and because they are evergreens. These are of special importance to the landscape given their historical prominence in cemeteries.

The pines are all found on the eastern fringes of the cemetery and appear to be remnant second growth. It is unlikely that they represent intentional plantings. These provide little landscape enhancement.

The single magnolia is a very nice specimen, situated on the northern border close to Jackson Street. This is an heirloom species, although not typically associated with cemeteries.

The two Chinese elms and single mulberry are all situated along the northern edge of the cemetery and may have been added relatively recently as buffer plants. The Chinese elm is introduced and while highly resistant to the Dutch elm disease and the elm leaf beetle, both of which have been highly destructive to our native elms, it is not an especially appropriate cemetery tree. Similarly, mulberry is rarely discussed as an heirloom plant and it plays a very minor role in cemetery landscapes.

Not included on this list is one specimen of cherry laurel, most of which has been removed. We strongly recommend that the remainder of this

<table>
<thead>
<tr>
<th>Tree</th>
<th>Number</th>
<th>Size Range</th>
<th>Total Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese elm</td>
<td>2</td>
<td>10-16"</td>
<td>20</td>
</tr>
<tr>
<td>Cedar</td>
<td>7</td>
<td>6-30"</td>
<td>108</td>
</tr>
<tr>
<td>Magnolia</td>
<td>1</td>
<td>20"</td>
<td>20</td>
</tr>
<tr>
<td>Mulberry</td>
<td>1</td>
<td>24"</td>
<td>24</td>
</tr>
<tr>
<td>Pine</td>
<td>3</td>
<td>20-28"</td>
<td>72</td>
</tr>
<tr>
<td>Oak</td>
<td>9</td>
<td>6-40"</td>
<td>220</td>
</tr>
<tr>
<td>Water oak</td>
<td>17</td>
<td>6-50"</td>
<td>422</td>
</tr>
<tr>
<td>Red oak</td>
<td>8</td>
<td>6-44"</td>
<td>178</td>
</tr>
<tr>
<td>White oak</td>
<td>5</td>
<td>3-16"</td>
<td>44</td>
</tr>
<tr>
<td>Post oak</td>
<td>1</td>
<td>32"</td>
<td>32</td>
</tr>
</tbody>
</table>

Figure 27. Diseased cherry laurel that should be removed from the cemetery. Adjacent stumps should also be cut off at ground level. All stumps should be poisoned to prevent suckers.
plant be entirely removed and herbicide applied to its stumps. This specimen is diseased and in very poor health. The species is also one that produces much trash, as well as seedlings. It should not be promoted. We also recommend that the stumps present in the cemetery all be cut at ground level since they currently present a severe tripping hazard.

Ideally the trees selected for all future use will be historically appropriate. In the case of an urban cemetery such as this, native species - such as oaks and cedars - are by far the best choices.

Some trees, whether historically appropriate or not, should probably be avoided since they pose significant maintenance issues. These include trees that produce dense shade (causing problems with the turfgrass); trees that exhibit suckers or surface roots (also causing turfgrass problems, e.g., beech, honeylocust, linden, poplar, and willow); trees that drop large quantities of leaves, seeds, or sap (such as ash, black cherry, catalpa, ginko, horsechestnut, mulberry, and sweetgum); and trees that are especially weak or vulnerable to wind or ice damage (such as ash, black cherry, pine, poplar, red maple, silver maple, tuliptree, willow, and white ash).

It is good practice to have trees planted to provide replacements as older ones are removed. A general effort - limited by available space and similar constraints - should be made to plan for future tree replacement, perhaps using a mix of fast-growing but short-lived trees intermixed with slow-growing but long-lived trees to create a natural appearance.

Planting Issues

Locations chosen for planting should not interfere with gravestones, curbing, or fences. Issues of security should also be considered and the use of small trees that obscure eye level views should generally be limited or avoided.

An example of how trees may affect security is provided by the magnolia. It is not pruned, allowing the branches to gracefully arch down to the ground. This is appropriate and avoids the issue of dealing with dropped leaves, allowing them to create natural mulch. However, in an urban setting this creates an unacceptable security problem, providing a hiding place. During this assessment we identified game day trash that had been discarded under the tree. Out of sight it has remained there for weeks (Figure 28).

In addition, it is important that the eventual spread and coverage of the trees being planted be considered. There is at least one example of two relatively recently planted trees...
that were inexplicably placed in very close proximity to one another. This creates a future problem and one should be removed immediately (Figure 29).

Research is suggesting that trees, especially older mature trees, improve in health when turfgrass is removed under the branch spread and mulch is applied at a depth not exceeding 3 to 4-inches.

There are many cases in the cemetery where the grass has been heavily shaded, resulting in significant downslope erosion. This issue should be addressed by identifying areas of stressed turf (typically under trees) and converting those areas to mulch.

All replacement trees should be of at least 2-inch caliper and meet the minimum requirements of the American Nursery and Landscape Association’s American Standard for Nursery Stock (ANSI Z60.1-2004).

Maintenance Issues

Maintenance involves at least four basic issues: watering, fertilization, pruning, and pest control.

The University does not, on a routine basis, water trees in the Cemetery, relying instead on rainfall. While this is typically acceptable, the landscape plan should include provisions for deep-root water during periods of drought. Using a root feeder without fertilizer, it is possible to apply water 12 to 18-inches below the surface. This approach can not only be used during drought, but also during extended periods of dry weather during the winter (as long as the temperatures are above freezing).

It is doubtful, given how recently the University has assumed control, that any fertilization of the trees has been conducted. Fertilization is not always necessary or appropriate, especially if the tree is already stressed. Nevertheless, trees require certain essential elements and applications of nitrogen, if applied wisely and when needed, can provide valuable benefits.

While shoot growth (growth occurring in the present year) and foliage color are often used as indicators of nutrient deficiency, the best indicator of whether fertilization is necessary is a soil test. Samples should be taken every 3 to 5 years to determine whether any macro or micronutrients are lacking.

It is best to fertilize trees when they are actively growing and have available water to
help absorb nutrients. This is typically from the spring, after new leaves emerge, through mid-season. Fertilizer should not be applied late in the season or during periods of drought.

In a cemetery setting organic fertilizers should be the primary choice. These materials, such as cottonseed meal and bone meal, have much lower salt indices than inorganic fertilizers – resulting in reduced salt uptake by monuments. This is important since salts cause staining, spalling, and deterioration of marbles, sandstones, brick, and even granites. In addition, organic fertilizers have a slower release rate and are easy on the root systems.

During our visit we observed considerable damage and a number of pruning issues (Figure 30). We observed much dead wood and broken branches in the trees. There are also crossed limbs and crowns that require thinning for health. There were a number of limbs broken, with some evidencing rot and decay, rather than appropriate compartmentalization and healing. All require pruning to improve tree structure and health. There are a number of trees that require pruning for either thinning or cleaning. Thinning is a technique of pruning that removes selected branches to increase light and air movement through the crown. This also decreases weight on heavy branches. The natural shape of the tree is retained and its overall health is improved. In cleaning, the pruning removes branches that are dead, dying, diseased, crowded, broken, or otherwise defective. This includes narrow crotches.

Trees should be pruned in such a manner as to preserve the natural character of the plant and in accordance with ANSI A300 (Part 1) - 2001 standards.

In pruning, branches should always be cut just beyond the branch collar (an extension of the main stem) and not flush with the trunk. Large branches should be removed with three cuts to prevent tearing of the bark which can weaken the branch and lead to disease.

It is likely that they have been ignored for a very long time – it is therefore critical that the University take immediate steps to prolong the lives of these trees since they form a critical part of the landscape.

All pruning within the Cemetery should be performed by an International Society of

<table>
<thead>
<tr>
<th>Table 3. ISA Certified Arborists in the Athens Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beasley, Stanley</td>
</tr>
<tr>
<td>Cauthen, Roger</td>
</tr>
<tr>
<td>Dalton, Dustin</td>
</tr>
<tr>
<td>Doonan, Shawn</td>
</tr>
<tr>
<td>Happek, Marianne</td>
</tr>
<tr>
<td>Hauser, Anna</td>
</tr>
<tr>
<td>Henning, Frank</td>
</tr>
<tr>
<td>Hughes, Christian</td>
</tr>
<tr>
<td>Kidd, David</td>
</tr>
<tr>
<td>Kuehler, Eric</td>
</tr>
<tr>
<td>McConnell, Mark</td>
</tr>
<tr>
<td>Morris, Larry</td>
</tr>
<tr>
<td>Ogletree, Stanley</td>
</tr>
<tr>
<td>Pettis, Stephen</td>
</tr>
<tr>
<td>Saunders, Andrew</td>
</tr>
<tr>
<td>Sewell, Joseph</td>
</tr>
<tr>
<td>Smart, Lisa</td>
</tr>
<tr>
<td>Smith, Samuel</td>
</tr>
<tr>
<td>Stutz, Paul</td>
</tr>
<tr>
<td>Szoke, John</td>
</tr>
<tr>
<td>Tillitski, Stephan</td>
</tr>
<tr>
<td>Whiddon, Alex</td>
</tr>
</tbody>
</table>
Figure 30. Pruning problems. Upper left, weak branch overhanging tombs. Upper right, dead wood that needs to be removed. Lower left, broken limbs. Lower right, damage and disease.
Figure 31. Other tree problems. Upper left, this cedar tree was hit by lightning and topped. Upper right, the tree is cracked and has termites, indicating dead wood. Consideration should be given to removal and replacement. Lower left and right, evidence of old wounds with extensive rot. The extent of damage should be evaluated.
Arboriculture (ISA) Certified Arborist, preferably one who is also an ISA Certified Tree Worker/Climber Specialist. Table 3 provides a list of Certified Arborists for the Athens area.

Trees should be inspected for potential threats to monuments, as well as general health. Ideally these inspections should be made yearly and after any storm where the winds exceed 55 mph. They should be pruned to remove potentially hazardous dead wood on a yearly basis, but safe pruning every 5 years by a certified arborist is acceptable. Plywood shelters or timber cribbing should be used as necessary to protect stones and monuments during the pruning process.

Pest Control

During this visit we observed only limited evidence of pests (such as the termites in the cedar tree shown in Figure 31). Disease was limited to rot (see Figure 31). It is likely that relatively little pesticide has been applied in the past. This is good since many pesticides, because of their salt content, can harm monuments. Where possible Integrated Pest Management practices should be implemented. Where chemical pesticides are necessary, they should be applied as a coarse spray to prevent drift.

Shrubbery

Selection and Planting

The cemetery evidences very little shrubbery. This is historically appropriate for a city cemetery where most plantings would be associated with individual plots or graves.

Masses of herbaceous vegetation are found along the north edge, used to hide the block wall between the cemetery and the Art Building. These, however, are not historically appropriate, are poorly tended, and pose security risks to cemetery visitors.

There are other, more appropriate, means of helping the northern wall blend into the landscape. Facing it with brick or stone is one solution. Even the planting of individual specimens of an heirloom plant, such as First Breath of Spring (*Lonicera fragrantissima*), would present less problems than the current masses of vegetation (see Figure 32). Other historic plantings in cemeteries might include boxwoods, elaeagnus, forsythia, and crepe myrtle.

There is an equal problem with the vegetation at the eastern edge of the cemetery, at the steep bank overlooking Thomas Street. This vegetation is allowed, we are told, since it
“holds the steep bank.” This vegetation, while “natural,” includes some noxious species, such as poison ivy. It also presents a security risk to cemetery visitors (Figure 33).

Generally slopes of 3:1 are used in roadway and construction fill; slopes of 1:4 such as this one present almost impossible erosion control conditions. For control it is often necessary to use crib walls, welded-wire walls, gabions, or cellular revetments. While we recognize the value of vegetation preventing soil erosion, it seems unlikely that this vegetation is achieving that goal. We note that a stone wall of some historical note is eroding and being lost – suggesting that the present vegetation is doing an incomplete job.

The University should identify the holder of the easement or right of way associated with Thomas Street and request that this bank be appropriately stabilized. This will need to be done without any further loss of cemetery property.

In the interim the existing trash vegetation should be removed and the edge planted with low vegetation. Although not historic, one choice would be mondo grass or liriope.

Fertilization

As with trees, the best indication of the need for fertilization is a soil test, which should be performed at least every two to three years. While some shrubs, such as boxwood, provide an indication of deficiency through the yellowing of lower leaves, such evidence can be missed and does not indicate the extent of the problem.

Where fertilization is necessary most shrubs, because of their shallow root systems, respond adequately to broadcasting the appropriate organic fertilizer around the base of the plant, typically at the drip line.

Most shrubs should be fertilized when they are actively growing and have available water to help absorb nutrients. Broad-leaved evergreens, such as boxwood, are best fertilized in the winter or spring. Summer or fall fertilization of these plants may induce late season growth that is highly susceptible to winter injury. Some plants that exhibit episodic growth, such as forsythia, may benefit from a
more continual fertilization program based on soil analysis and plant growth response.

Pruning

One of the most significant problems we see in cemeteries is improper pruning of shrubs. In general, the shrubbery is overpruned, creating unnatural and fanciful shaped creations, and often the pruning (or absence of correct pruning) has allowed the accumulation of significant amounts of deadwood. When shrubs are headed back or sheared routinely, a lot of dense, thick new growth is produced near the outer portions of the canopy. As a result, less light reaches the interior portions of the plant, leaves within the canopy become sparse, and the plant appears stemmy and top-heavy.

To avoid this problem, it is necessary to head back the shrub’s shoots to several different heights. When heading back, cuts must be made on a slight slant one-quarter inch above a healthy bud. The bud should be facing the direction preferred for new growth.

Thinning (cutting selected branches back to a side branch or main trunk) is usually preferred over heading back. Thinning encourages new growth within the interior portions of a shrub, reduces the size and provides a fuller, more attractive plant.

Turfgrass Issues

The bulk of the cemetery is covered not in turfgrass, but a variety of “weeds.” There are large areas of bare soil, probably the result of heavy shade (although ground compaction and low fertility cannot be ruled out).

This vegetation is almost certainly historical since city cemeteries in the early to mid-nineteenth century received little upkeep. Nevertheless, it is not a particularly good choice today. The uneven growth creates an unkempt appearance that requires more frequent mowing. Coverage is thin, resulting in heavier than necessary down slope sheet erosion. A better approach would be to convert the cemetery into a turfgrass. This would promote a more even grass, improving appearance, reducing mowing, and minimizing soil loss. In the Athens area there are two basic choices: bermuda or centipede. We are inclined to support the use of centipede, a grass that is well adapted to infertile soils. It spreads by stolons, producing a medium-textured turf. Maintenance requirements are low when compared to other turfgrasses, and it has fair to good shade tolerance and good drought tolerance. While on the edge of its preferred habitat, we have found it to do well in similar settings.

Renovation

We recommend that the University gradually implement a renovation program in order to establish a good stand of centipedegrass.
Given the anticipated depth of burials, it is entirely appropriate to till the upper 3 inches of soil, using amendments as appropriate. With a good soil bed, centipede sod should be laid in a checker-board pattern with the ends butted up tight to allow for shrinking when the sod dries. Rolling of the sod after placement will allow for a good sod to soil contact, enhancing rooting. Frequent watering is needed during the first few weeks until the plant establishes a good root system, but this can be provided by spot watering.

Although sprigging or seeding can be used, these techniques are much more labor intensive and more likely to fail.

In heavy shade areas – primarily under trees – centipedegrass will fail to perform effectively. We recommend 3-4 inches of mulch instead. Mulching, however, should be avoided – whenever possible – adjacent to stones since it holds moisture and may cause additional stone deterioration.

Mowing

In general, riding mowers should not be used in cemeteries since they are difficult to control among plots with fences, coping, and numerous monuments. We typically recommend push mowers with no more than 22-inch decks.

The Old Athens Cemetery, however, offers areas where there are few remaining stones and the use of riding mowers may be acceptable. The mowers used, however, must have closed cell foam “bumpers” installed to prevent accidental damage to monuments.

We note that there is abundant evidence of mower damage in the cemetery, although we can’t determine if this has occurred since the University has resumed maintenance or before. Nevertheless, Figure 35 clearly illustrates the potential damage that careless use of mowers can cause to stones.

Figure 36 illustrates the damage that is
being caused to the vegetation, showing the scalping of tree roots by mowers (given the damage, probably by riding mowers). This damage will affect the trees and provides yet another reason that areas immediately under the very large historic trees should be mulched.

Mowing during the growing season should be conducted weekly to every 10 days. While mowing less frequently may have some appeal, the removal of grass adjacent to monuments would become more difficult with longer and thicker grass blades – and this in turn could lead to more damage to the stones.

Clippings should not be bagged – not only can the bag cause damage to stones and make maneuvering the equipment more difficult, but the clippings when left on the ground will provide nutrients.

In the past herbicide has been used to eliminate the necessity for trimming around monuments and fences. As previously discussed, this is unacceptable and the practice needs to be stopped. The use of herbicides is inherently damaging to stone and it disfigures the landscape.

It is appropriate to use nylon trimmers with a very light line – no heavier than .065-inch (or thinner). In addition, crews must be instructed to avoid hitting the stone with the line. Since most have concrete bases, this will make trimming easier.

Table 4.
Maintenance Schedule for Centipedegrass

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mowing</td>
<td>Mow at 1” at greenup</td>
<td>Mow at 1½”</td>
<td>Raise to 2” before frost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilization</td>
<td>Test for pH, nitrogen, and potassium</td>
<td></td>
</tr>
<tr>
<td>Pest Control</td>
<td>White grubs are largest threat, treat as necessary</td>
<td></td>
</tr>
<tr>
<td>Weeds</td>
<td>Preemergence</td>
<td></td>
</tr>
<tr>
<td>Renovation</td>
<td>Post-emergence, avoid stressing lawn</td>
<td></td>
</tr>
<tr>
<td>Irrigation</td>
<td>Sod</td>
<td></td>
</tr>
<tr>
<td>Irrigation</td>
<td>Irrigate to prevent drought stress</td>
<td></td>
</tr>
</tbody>
</table>

Fertilization and Weed Control

The cemetery staff does not conduct routine soil tests and (at least thus far) no fertilization is applied. This is not a particularly significant issue since the cemetery has no good turfgrass present.

Centipede – if installed as recommended – requires relatively little fertilization and additional nitrogen would simply require more frequent mowings. Nevertheless, we do recommend several soil tests, primarily to determine the acidity of the soil (which may need adjustment) and to allow an evaluation of the need for nitrogen and potassium (centipede does not generally receive phosphorus fertilizer). The addition of potash in September through November may enhance winter hardiness. As previously discussed, in order to minimize salt uptake by the stones, slow release organic fertilizers should be used and inorganic fertilizers should be avoided.

There has been no reason to treat the lawn for weeds (since the grass is primarily weedy growth). There is a legitimate concern over damaging stones. Many herbicides do contain salts and these can migrate into stones (especially sandstones and marbles), causing discoloration, spalling, and other damage.

Nevertheless, the current lawn does exhibit a very heavy infestation of weeds and preemergent and postemergent treatments are appropriate.

One approach, of course, is to avoid broadcast herbicides and, instead, use a coarse
spray to treat limited areas. Using this approach it would be possible to treat for many annual weeds and over several years dramatically improve the appearance of the cemetery. Care must be taken to avoid spraying the monuments, so we realize the application will not be complete or perfect, but over several years the prevalence of these weeds will decline. Postemergent weeds may be controlled in the same manner.

Pest Control Practices

Similarly, the cemetery does not undertake any pest control practices.

Fire ants are a significant problem at the cemetery and we identified a number of active mounds throughout the 2 acres. These pests are not simply an aesthetic nuisance, obscuring stones and creating mounds, but also hinder appropriate lawn care activities, such as mowing. They are also a public health threat and present a significant liability to the University. One survey conducted in 1998 concluded that 33,000 people in the state of South Carolina sought medical attention as a result of fire ant stings. Of those 15% had severe localized allergic reactions and 2% had severe systemic reactions resulting in anaphylactic shock.

We recommend that, minimally, individual mounds be treated with a product such as Amdro (hydramethylnon). An even better approach is the use of Amdro as a broadcast fire ant bait while fire ants are foraging. After 10-14 days it should then be used as an individual mound treatment on any mounds that continue to be a problem. This approach should be used twice a year, typically in April or May and again in September or October.

The only other pests identified during this assessment are ground bees or wasps. A very large number were found in the McDonald plot. Because of the public hazard, this nest should be eradicated.

Irrigation

Old Athens Cemetery does not have an irrigation system and, in general, we do not recommend them – they use very large quantities of water, their placement can interfere with markers and graves, and their operation can cause erosion to stones.

Unfortunately we also were unable to identify any hose bibs in or adjacent to the cemetery. We do recommend the availability of hose bibs since they allow specific lawn areas that might be stressed by drought to be watered. In addition, areas where the lawn is being renovated can be watered to encourage the sod to root.

We recommend the placement of a water line along the northern edge of the cemetery (adjacent to the block wall) with freeze proof/anti-siphon bibs every 100 feet. This will create minimal impact to the cemetery and will allow water access to all areas with no more than 250 feet of hose. The excavation and placement of the water line provides another
opportunity for the Anthropology Department to assist through monitoring the line for archaeological or osteological remains.

Recommendations

The University will need to allocate at least one staff person half-time to the care and upkeep of the cemetery. The level of staffing will need to increase during some periods.

Individuals assigned to the cemetery should have appropriate training and experience. We strongly recommend certification through a landscape/lawn care organization. Continuity of staffing is a special concern.

Tree selection within the Cemetery should be focused on historically appropriate species. Species should, however, be evaluated to eliminate those with problems such as suckers, surface roots, inherent weakness, etc. The Cemetery should develop a tree plan to ensure that when any tree must be removed, an appropriate replacement is planted in its place.

Trees within the cemetery should be fertilized on a routine basis and should be professionally evaluated and pruned at least once every 5 years by an ISA Certified Arborist. All trees should be inspected yearly and after any storm with winds in excess of 55 mph.

The Cemetery evidences a number of tree maintenance issues, likely the result of years of neglect prior to the University’s recent involvement. Immediate actions should include the removal of the diseased cherry laurel, the cutting of all stumps to grade, the pruning and inspection of all trees within the cemetery, the clearance pruning of the cemetery magnolia to prevent hiding places, and the evaluation of all trees for possible safety hazards. Only ISA Certified Arborists should be responsible for tree pruning and maintenance.

The cemetery has relatively little shrubbery and this is generally appropriate. There are, however, large masses along the north and east edges. These should be removed and replaced with historically appropriate individual specimens.

The University must identify those responsible for the Thomas Street right-of-way and work with that party to establish appropriate slope stabilization and erosion control. The current reliance on vegetation is not adequate and several feet are being lost every decade.

The weedy lawn in the cemetery should be renovated to an appropriate turfgrass, such as centipede or bermuda. Areas of dense shade should be taken out of grass/weeds and 3-4 inches of mulch should be established.

Mowers should have closed-cell foam bumpers installed to prevent damage to the stones. Nylon trimmers may be used, but the line should not be heavier than .065-inch. The routine use of herbicides to control vegetation should cease immediately.

Soil analysis should be conducted to determine if adjustments are necessary for the turfgrass.

Preemergent and postemergent weed control should be instituted at the Cemetery using liquid herbicides applied as a course spray, taking care to avoid stones. The herbicides will affect the stones and this work will need to be very carefully done to ensure that the stones are not damaged.

The Cemetery has a significant problem with fire ants. We recommend, minimally, individual mound treatments using Amdro. A better approach would be a twice yearly program of Amdro bait application, followed in 10 to 14 days by the treatment of any mound that is still active. Because of the liability that fire ants pose, this program should be implemented immediately.

We recommend the installation of a water line along the north edge of the cemetery. This will allow spot watering, critical for the...
establishment of a turfgrass and for watering during drought conditions.
OTHER MAINTENANCE ISSUES

Displaced Stones

There are displaced stones throughout the cemetery, almost always in plain view. None, however, are being replaced or even being picked up and secured. As a result, stones are being routinely damaged by mowing activities and present an attractive target for thieves and souvenir hunters (Figure 38).

The condition of the cemetery today clearly reveals the problems associated with securing damaged stones. It is clear that a very large number of stones have simply disappeared over the years. Some that were broken and repaired have had repairs fail and can no longer be identified. These may be in someone’s basement or may have been carried away for use as garden decorations.

The University should fund a program to either reset stones where possible or minimally develop a policy to collect these fragments, mark where they were found, and securely store them until such time as a repair can be made.

One approach to marking is to use aluminum tags impressed with the map coordinates, grave number, or a recorded name, and attaching it to the stone using nylon string. In particularly harsh storage environments an aluminum wire can be used, but this requires special care and storage to prevent damage to the monument.

We have previously made the same recommendation for fence parts – suggesting that the fences be repaired or that the parts be secured, either on or off-site.

Signage

Signage is of four basic types: identification, regulatory, informational, and interpretative. They are generally recommended in this same priority.

Identification signage might include the name of the cemetery and might also include the cemetery’s date of founding and historic designation (i.e., listed on the National Register).

The Old Athens Cemetery is identified at the main Jackson Street entrance by a faded wooden marker mounted to the wall. It provides only the name, use dates, and that the cemetery is being maintained by the Foundation. There is no signage at the other entrances to the cemetery.
We recommend that this existing sign be removed as obsolete and in poor condition. In its place there should be new signage that is consistent with whatever unified signage system is used by the University.

Regulatory signage specifies laws, regulations, or expected standards of behavior. No such signage exists at the cemetery.

We recommend that the University develop regulatory signage dealing with, minimally, these issues (perhaps with some modifications of language as might be needed):

- The stones and monuments in this cemetery are fragile. Please refrain from leaning, sitting, or climbing on any monument or mausoleum. All children must be escorted by an adult. Absolutely no gravestone rubbings will be allowed.

- The cemetery is open for visitation between 7:00 am and 6:00 pm. There is absolutely no admittance outside of these hours and violators will be subject to arrest for trespass.

- Absolutely no alcoholic beverages or fireworks are allowed in the cemetery. Proper conduct is expected at all times.

- Out of respect for those buried here and their descendants, no pets are allowed in the cemetery.

- For additional information concerning burials, plots, or maintenance issues, please contact the University Grounds Department at (706) 542-7531. In case of emergency immediately contact the University of Georgia Police at (706)-542-2200 or 2-2200.

This signage is of particular importance given the extent of vandalism present in the cemetery.
Figure 41. Extensive evidence of trash throughout the cemetery. The University must immediately begin tackling this problem. Allowing trash to remain gives the impression that there is nothing wrong with this practice and only encourages additional trash. Related to the problem of trash is the vandalism that goes along with intoxication. Dealing with the problem involves increasing litter patrols and posting (and enforcing) the ban against alcohol in the cemetery.
consequently involve when the cemetery may be considered open, appropriate behavior in the cemetery, and the prohibition against alcohol in the cemetery. This regulatory signage should be placed at all formal entrances, including Jackson Street, the entrance from the Art Building, and the entrance from Baldwin Hall.

The last two types of signage are information (for example, directional signs or street names) and interpretative (information on historic people buried in the cemetery).

Given the small size of the cemetery, informational signage is not needed.

The only interpretative signage at the cemetery is a Georgia Historical Marker near the Jackson Street entrance. This is also available on the University of Georgia web site at http://www.cviog.uga.edu/Projects/gainfo/gahistmarkers/athenscemeteryhistmarker.htm.

This is likely appropriate for the present time. The University, however, may wish to use this study to provide additional information on its web site.

Trash

The trash issue is probably intimately associated with vandalism and security in the cemetery – both stemming from inadequate control over the cemetery during holidays, weekends, and especially football weekends. At the time of our visit trash was obvious and significantly detracted from the dignity and beauty of the cemetery. Much of this trash consisted of alcohol containers. Some of the trash had clearly been in the cemetery for weeks, given its fading and deterioration.

Although on-site for only a few days, we observed individuals picking up trash on the pathway between the cemetery and Art Building and never even glance in the cemetery. Clearly visible trash remained in the cemetery untouched. We were also informed that the University pays for trash collection immediately after football games – although clearly the cemetery is not included in that contract.

It is critical that the University deal with this trash issue. It detracts from the dignity of the cemetery and promotes the idea that the discard of trash is acceptable. This likely leads to other damage.

Critical control issues involve collection of trash, notice against littering, and placement of additional trash cans at the entrances to the cemetery (trash cans should be avoided within the cemetery).

Monument Maintenance

During this assessment a small number of previously repaired monuments were identified. Nearly all of the brickwork repairs are substandard in both materials and workmanship. The monument repairs, in contrast, were competently performed and appear to follow general good practice. They have simply failed because of the extreme conditions of the cemetery and lack of appropriate care. It is important to understand that monument conservation must be considered long-term, on-going maintenance. However, to complicate matters there appears to be no record of when or by whom any of these repairs were made.

We have identified two problem areas and each will be briefly addressed below:

- Repointing or reworking of historic brickwork, and
- Repair of marble.

We will also briefly examine appropriate cleaning methods, since there may be increasing demand for cleaning, and the setting of new stones, a practice which has already begun in the cemetery.
OTHER MAINTENANCE ISSUES

Repair of Marble

It appears that all previous repairs used consistent methods and materials, and all were blind pin repairs. These involve drilling broken stone and inserting a length of dowel or rod, set with an epoxy, to pin the two fragments together. The technique is common in stone conservation, although there are legitimate differences of opinion among conservators regarding the appropriate pin to use (nylon, fiberglass, brass, or stainless steel, each with a different tensile strength, modulus of elasticity, and coefficient of thermal expansion) and the appropriate epoxy (in general a hi-mod, moisture insensitive, structural epoxy, although lo-mod may be used for certain applications).

There is no single specification for the repair of marble or sandstone, but in general we can caution the University that modern monument dealers (and the general public) are unfamiliar with historic stone and have little or no appropriate experience in its care and repair. When repairs of old stones are needed, only a stone conservator who subscribes to the Standards of Practice and Code of Ethics of the American Institute for Conservation of Historic and Artistic Works (AIC) should be retained.

Critical features of professional conservation treatment include:

- The admonishment to do no harm – to ensure that treatment doesn’t make the problem worse.
- The requirement that as much of the original fabric as possible be retained.
- The demand that only the gentlest and least invasive treatments be used.
- That an effort be made to use reversible treatments and to ensure that current treatment doesn’t impede future treatments.
- That all proposed work is presented to the client as a treatment proposal and approved prior to initiation of the work. Afterwards there is an equal requirement that the client be provided with a written after-treatment report that specifies what was done, what materials were used, and provides recommendations for preventative conservation.

Repointing

The bulk of the mortar repair work in the cemetery used a hard Portland cement mortar – far harder than the surrounding brick. In addition, no effort was made to match the color of the original mortar. Often the mortar was “buttered” over the joints, greatly increasing the normal joint width and dramatically changing the appearance of the brick work. The joints were not finished in any fashion. Overall, the work is entirely unacceptable, being both aesthetically disturbing and inherently damaging to the soft, low fired bricks.

All repointing should minimally meet or exceed the specifications established by Preservation Briefs 2: Repointing Mortar Joints in Historic Masonry Buildings.

New mortar must conform to the following criteria: (1) it must match the historic mortar in color, texture, and tooling, (2) it must have greater vapor permeability and be softer than the masonry units, and (3) it must be as vapor permeable and as soft as the original mortar.

To achieve these criteria it may be necessary to have a conservator conduct a mortar analysis. It is also inappropriate to specify a single mortar that is appropriate for all preservation work, especially at a cemetery such as the Old Athens Cemetery where a variety of time periods and original mortars are present. However, in general, the mortar should be high
in lime and low in compressive strength. A natural hydraulic line (NHL) or air lime would generally be specified for such work. For example, an air lime or NHL 2.5 might be mixed at the ratio of 0:1:3 for much repointing work at a cemetery such as Old Athens Cemetery. The sand selection would be especially critical since that additive would primarily determine the final color of the mortar.

Existing joints would need to be raked out to a depth 2.5 times their width. Thus, a 3/8-inch joint would need to be raked out to a minimum depth of 15/16-inch. The repointing mortar, generally mixed somewhat dry to minimize shrinkage and reduce cleaning efforts, would be firmly packed in the thoroughly cleaned and moistened joint using lifts no deeper than 1¼-inches.

The specifications are more detailed than this brief overview, but this should serve to indicate the care required. We believe that for routine repairs the University’s masons should be capable of performing excellent work. More involved work, such as the rebuilding of the brick vault or repair of the brick and stucco obelisk, however, will need to be performed by trained conservators.

Cleaning of Monuments

Cleaning is largely an aesthetic issue at the Old Athens Cemetery – we saw few examples where soil or biologicals were actually causing damage to the monuments. We also observed little evidence of cleaning efforts and, fortunately, no evidence of inappropriate cleaning damage.

Nevertheless, it is appropriate to ensure that the University – as the new caretaker – understands that many cleaning techniques – especially those used by commercial contractors involving high pressure, abrasives, and bleach products – are entirely inappropriate for historic markers. Table 5 discusses problems with a variety of “common” stone cleaning processes used by commercial firms.

Cleaning – even when done correctly – will gradually erode monuments, making them

<table>
<thead>
<tr>
<th>Cleaning Technique</th>
<th>Potential Harm to Stone</th>
<th>Health/Safety Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand Blasting</td>
<td>Erodes stone; highly abrasive; will destroy detail and lettering over time</td>
<td>Exposure to marble dust is a source of the fatal lung disease silicosis</td>
</tr>
<tr>
<td>Pressure Washers</td>
<td>High pressure abrades stone. This can be exacerbated by inexperienced users. Pressures should not exceed 90 psi.</td>
<td>None, unless chemicals are added or high temperature water is used.</td>
</tr>
<tr>
<td>Acid Cleaning</td>
<td>Creates an unnatural surface on the stone; deposits iron compounds that will stain the stone; deposits soluble salts that damage the stone</td>
<td>Acids are highly corrosive, requiring personal protective equipment under mandatory OSHA laws; may kill grass and surrounding vegetation</td>
</tr>
<tr>
<td>Sodium Hypochlorite & Calcium Hypochlorite (household and swimming pool bleach)</td>
<td>Will form soluble salts, which will reappear as whitish efflorescence; can cause yellowing; some salts are acidic</td>
<td>Respiratory irritant; can cause eye injury; strong oxidizer; can decompose to hazardous gasses</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>Often causes distinctive reddish discolorations; will etch polished marble and limestone</td>
<td>Severe skin and eye irritant</td>
</tr>
<tr>
<td>Ammonium Hydroxide</td>
<td>Repeated use may lead to discoloration through precipitation of hydroxides</td>
<td>Respiratory, skin, and eye irritant</td>
</tr>
<tr>
<td>D/2 Architectural Antimicrobial</td>
<td>No known adverse effects, has been in use for nearly 10 years</td>
<td>No special precautions required for use, handling, or storage. Mild eye irritant.</td>
</tr>
</tbody>
</table>
susceptible to more soiling and damage. Consequently, cleaning should be conducted no more frequently than perhaps once every 5 years. The safest commercial product currently available for cleaning is D/2 Architectural Antimicrobial distributed by Cathedral Stone.

The University should prohibit any cleaning that is not first approved by a stone conservator.

Replacement Stones

We see several modern stones that have been placed in the cemetery, apparently by descendants. We are told that these stones, on at least one occasion, caused considerable controversy in their placement.

There are times when replacement stones are entirely appropriate in a historic cemetery. The most common situation is when a historic stone is no longer easily legible. It is never appropriate to replace the historical marker. The historically sensitive solution, however, is to leave the original stone in place and, somewhere discretely beside it, erect a small, plain marker providing the original inscription. The goal in such circumstances is to ensure that the original stone is not “upstaged,” that the public’s attention is not directed away from the original monument, and that the historic fabric is left in place. The new marker should be seen only as the media necessary to provide a message which is no longer easily decipherable.

It is also questionable whether it is appropriate to erect a new marker where one did not exist before, absent any historic documentation concerning the precise location of the grave. Suitable documentation, for example, might be a period photograph that shows the grave, allowing it to be located in relationship to other, still identifiable graves.

However, placing a marker on little more than the belief that an individual is buried somewhere in the general vicinity is inappropriate and confuses the historical record.

It is even more troubling in a historic cemetery when new materials are used. For example, granite - in a cemetery the age of the Old Athens Cemetery - is entirely inappropriate, detracting from the historic character and altering the landscape.

The University must set very strict guidelines on the size, shape, and material suitable for any additional markers to be placed in the cemetery. While exact details have some flexibility, a key point should include the recognition that only sandstone, marble, and brick should be used. These are materials that were used historically and that blend in with those that remain. New markers need not appear “old,” that is, they don't need to be cut in old styles, but they should be in keeping with mass and scale of the old markers. New
monuments should not be allowed to overwhelm the historic character of the cemetery. Replacement markers, intended to provide continuity in inscriptions and the memory of the individual, should be flush to the ground. They should also be independently checked and verified that the wording is identical in spelling and arrangement to the original marker. No modifications, corrections, or additions should be allowed.

Recommendations

There are displaced stones or stone fragments throughout the cemetery. As identified these should either be re-associated with the rest of the monument or should be collected, labeled, and securely stored by the City to prevent damage or theft.

There is only minimal signage at the Old Athens Cemetery. Obsolete signage should be removed and new identification signage should be erected that compiles with the University’s unified system of signage.

There is currently no regulatory signage. We recommend immediate placement of critical regulations at the three entrances to the cemetery. Regulations concerning conduct, when the cemetery is open, and enforcement should be prominently displayed.

Additional historical information should be made more readily available through the University’s web site.

Trash is a very significant issue in the cemetery. The University must more effectively control litter and collect that which is left improperly in the cemetery. This should involve (1) ensuring that all game litter is immediately collected by the outside contract firm, (2) establishing regular daily rounds of the cemetery by in-house litter patrol staff, and (3) periodic supervisory inspections.

Repair of the stones and monuments at the Old Athens Cemetery should be performed only by trained conservators subscribing to the Code of Ethics and Standards of Practice of the American Institute for Conservation of Historic and Artistic Works (AIC). It is the responsibility of the University to ensure that all future work at the cemetery meets these very high standards.

Cleaning is inherently damaging to stones and some methods – such as the use of bleach, abrasives, and high pressure – are particularly damaging and disfiguring. Cleaning should be minimized and should be performed only when recommended by a conservator using materials and techniques specifically outlined for the stone.

Replacement stones intended to provide continuity by providing legible inscriptions should be set flush to the ground and independently verified for accuracy. The original stone should not be removed or altered in any fashion. In general it is not appropriate to introduce new stones into the cemetery. Where there is a legitimate reason for doing so the monument should match the historic character of the cemetery, using marble, sandstone, or brick of a scale and design appropriate to the existing historic landscape and fabric.
PRIORITIES AND FUNDING LEVELS

Understanding Priorities

With limited funds it is often critical that organizations establish priorities for cemetery conservation/preservation projects, ensuring that the most critical issues are dealt with first. Priorities are identified here as First, Second, or Third:

First priorities are those we recommend undertaking during the current fiscal or calendar year. These are largely issues that have the potential to affect the public health and safety and consequently require immediate attention. Examples of these include loose monuments that might topple and diseased trees that might shed limbs unexpectedly. The rationale here is that cemetery caregivers have a duty to prevent endangering the public. Correcting these problems is not only good stewardship, but significantly reduces liability.

Second priorities are those that should be budgeted for over the next 2 to 3 years. They represent urgent issues that, if ignored, will result in both significant and noticeable deterioration of the Old Athens Cemetery as a historic resource. Examples include corroding ironwork, monuments that might topple and break, and trees growing against other cemetery features. The rationale here is that caregivers have a fiduciary responsibility to spend wisely and it is good stewardship to reduce expenses through timely repairs. Deferred maintenance is not only poor stewardship, but it is fiscally irresponsible. Simple repairs, delayed, turn into very expensive treatments.

Third priorities are those that may be postponed for 3 to 5 years. They are issues for which the University may seek grant or foundation funding. Or they are issues that can wait for appropriations to build up to allow action. Because they are given this lower priority, however, they should not be dismissed as trivial or unimportant.

Recommendations

Table 6 lists the recommendations offered throughout this assessment, classifying them by priority.

The proposed budget for immediate actions this fiscal or calendar year, therefore, is approximately $45,400. While this is a significant sum to spend without prior budgeting, all of the actions require the University’s immediate attention. This size of the expenditure, regretfully, is the result of years of deferred maintenance and postponement. Additional postponements are imprudent (or, if deferred, the cost will continue to exponentially escalate). One of the most expensive costs, approximately $15,000 for tree inspections, pruning, and fertilization may be far less if the work is done in-house. What remains critical, however, is that the work is done and is performed by a certified...
<table>
<thead>
<tr>
<th>Priority</th>
<th>Recommendation</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>First - this fiscal or calendar year</td>
<td>Formalize policy that all decisions at Old Athens Cemetery will be made in the context of the Secretary of the Interior’s Standards for Preservation</td>
<td>n/c</td>
</tr>
<tr>
<td></td>
<td>Establish by policy that remnant historic fabric will be preserved and that the existing blend of churchyard and town/city cemetery characteristics will be preserved</td>
<td>n/c</td>
</tr>
<tr>
<td></td>
<td>Secure all ironwork and monuments to prevent additional damage or theft</td>
<td>$800</td>
</tr>
<tr>
<td></td>
<td>Establish routine police patrols through the cemetery</td>
<td>n/c</td>
</tr>
<tr>
<td></td>
<td>Establish policy and procedures to identify, report, and respond to damage, vandalism, and theft within the cemetery</td>
<td>n/c</td>
</tr>
<tr>
<td></td>
<td>Establish a policy limiting vehicular traffic in the cemetery to critical activities and prohibiting all traffic during wet weather</td>
<td>n/c</td>
</tr>
<tr>
<td></td>
<td>Add additional lighting along the two pathways and Jackson Street</td>
<td>$9,000</td>
</tr>
<tr>
<td></td>
<td>Establish an integrated vandalism reduction program that includes heightened security, public education, and aggressive enforcement</td>
<td>$5,000</td>
</tr>
<tr>
<td></td>
<td>Discourage paranormal investigation in the cemetery and eliminate (through signage and enforcement) activities in the cemetery at night</td>
<td>n/c</td>
</tr>
<tr>
<td></td>
<td>Have trees inspected by a certified arborist and treated as necessary (this cost may be reduced if done in-house)</td>
<td>$15,000</td>
</tr>
<tr>
<td></td>
<td>Eliminate the use of herbicide and switch to trimmer use, with a line no thicker than .065-inch</td>
<td>n/c</td>
</tr>
<tr>
<td></td>
<td>Implement a fire ant control program consisting of baiting and individual mound treatments</td>
<td>$2,000</td>
</tr>
<tr>
<td></td>
<td>Ensure that there is adequate staff (cemetery maintenance will require minimally 0.6 person full-time) and ensure personnel are appropriately trained</td>
<td>Uncertain</td>
</tr>
<tr>
<td></td>
<td>Establish a tree replacement program that plans for replacement using historically appropriate species</td>
<td>n/c</td>
</tr>
</tbody>
</table>
Table 6, cont.

Prioritization of Recommendations

<table>
<thead>
<tr>
<th>Priority</th>
<th>Recommendation</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>First – this fiscal or calendar year, cont.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert poorly sodded, heavily shaded areas with older trees to mulch</td>
<td></td>
<td>$900</td>
</tr>
<tr>
<td>Install appropriate signage, including regulatory signage</td>
<td></td>
<td>$4,000</td>
</tr>
<tr>
<td>Immediate conservation issues – representing safety issues for the public</td>
<td></td>
<td>$7,000</td>
</tr>
<tr>
<td>Install closed cell foam bumpers on all mowers used in the cemetery</td>
<td></td>
<td>$200</td>
</tr>
<tr>
<td>Conduct soil analysis for sod and trees</td>
<td></td>
<td>$200</td>
</tr>
<tr>
<td>Add additional historical information concerning the cemetery to the University’s web site</td>
<td></td>
<td>n/c</td>
</tr>
<tr>
<td>Improve trash collection in the cemetery – ensure existing contract service collects all trash after games, require that in-house trash collection make rounds through the cemetery</td>
<td></td>
<td>n/c</td>
</tr>
<tr>
<td>Install trash cans at the three existing entrances to the cemetery</td>
<td></td>
<td>$1,300</td>
</tr>
<tr>
<td>Establish and formalize a policy concerning placement of replacement stones</td>
<td></td>
<td>n/c</td>
</tr>
<tr>
<td>Second – over next 2 to 3 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop a National Register nomination for the cemetery using the available data</td>
<td></td>
<td>$2,000</td>
</tr>
<tr>
<td>Identify and examine additional twentieth century records for the cemetery, including those of the DAR and Foundation</td>
<td></td>
<td>$1,000</td>
</tr>
<tr>
<td>Critical stone and iron conservation, including monument repair, ironwork maintenance and repair, and wall/brickwork repair as itemized in the attached treatment proposals</td>
<td></td>
<td>$65,080</td>
</tr>
<tr>
<td>Remove the chain at the Baldwin Hall cemetery entrance, replacing it with three lockable bollards</td>
<td></td>
<td>$2,500</td>
</tr>
<tr>
<td>Remove the large masses of vegetation along the northern wall and replace them with historically appropriate plantings</td>
<td></td>
<td>$3,000</td>
</tr>
<tr>
<td>Identify holder of Thomas Street R/W and work toward resolving erosion of this bank</td>
<td></td>
<td>n/c</td>
</tr>
</tbody>
</table>
The Second Priority issues have an even greater cost -- $90,180 -- although these may be spread out over two to three years – reflecting a per year budget of only $30,060 to $45,090 per year. Consequently, these are very modest costs and most are associated with conservation treatments. These treatment costs are so high ($65,080, not including travel, per diem, and lodging) because the cemetery has been allowed to deteriorate so significantly.

The Third Priority issues represent only $43,900 – again such a small amount that it should be easily budgeted by University, especially when it can be spread over several years. The most significant cost here is lawn renovation.

Of course, there are on-going costs – just as there are for any resource of value to the community. Just as water service or police protection has a yearly cost, so too does this historic resource. The problem is that for years these costs have been deferred, creating cumulative problems inherited or adopted by the University that now must be addressed. Failure to do so will result in the resource becoming so degraded that its continued significance to the community will be doubtful.

Table 6, cont.
Prioritization of Recommendations

<table>
<thead>
<tr>
<th>Priority</th>
<th>Recommendation</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second – over next 2 to 3 years, cont.</td>
<td>Pathway work, including a brick pathway and steps to replace the heavily eroded dirt path through the middle of the cemetery and additional mulch to stabilize the eastern pathway along the edge of the cemetery</td>
<td>$16,600</td>
</tr>
<tr>
<td>Third – over next 3 to 5 years</td>
<td>As part of on-going historic research, scan local papers for additional historical documentation</td>
<td>$2,000</td>
</tr>
<tr>
<td></td>
<td>Renovate lawn areas within the cemetery</td>
<td>$30,000</td>
</tr>
<tr>
<td></td>
<td>Begin a program of pre- and post-emergent herbicide application for the renovated sod areas</td>
<td>$5,000</td>
</tr>
<tr>
<td></td>
<td>Installation of water line along northern boundary of the cemetery for spot watering (4 bibs)</td>
<td>$3,000</td>
</tr>
<tr>
<td></td>
<td>Conduct third priority stone treatments</td>
<td>$3,900</td>
</tr>
</tbody>
</table>
Blair, Eliot
2006 Old Athens Cemetery
Geophysical Survey Project. Ms.
on file, Department of
Anthropology, University of
Georgia, Athens.

Cooper, Patricia Irvin and Glen McAninch
1984 Map and Historical Sketch of the
Old Athens Cemetery, Jackson
Street, Athens, Georgia. Second
Edition. Old Athens Cemetery
Foundation, Inc., Athens,
Georgia.

Duncan, Janine
2006 Boundary History and
Condition Report, Jackson
Street Cemetery (Old Athens
Cemetery). Ms. on file, Hargrett
Rare Book and Manuscript
Library, University of Georgia,
Athens.

Fickett, R.N., III
1961 A 1932-1933 Survey of Old
Town Cemetery, Jackson Street,
Athens, Georgia by Lucy Leah
Redwine (Mrs. M.R. Redwine).
Ms. on file, Grounds
Department, University of
Georgia, Athens.
APPENDIX 1. RESUME FOR MICHAEL TRINKLEY

MICHAEL TRINKLEY
Chicora Foundation, Inc.
P.O. Box 8664 • 861 Arbutus Drive
Columbia, South Carolina 29202
803/787-6910

Education/Training

1974 B.A., Anthropology, University of South Carolina, Columbia
1976 M.A., Anthropology, University of North Carolina, Chapel Hill
1980 Ph.D., Anthropology, University of North Carolina, Chapel Hill
1997 Non-Destructive Investigative Techniques for Cultural Resource Management, NPS Workshop, Fort Scott National Historic Site, Fort Scott, Kansas (geophysical techniques)
1999 Jahn Installer Workshop, Cathedral Stone Products, Inc., Jessup, Maryland (3 days) (certified installer 9906811-SC)
2001 Preservation & Care of Brownstone Buildings, Technology & Conservation Conference, Boston, Massachusetts
2004 Preservation Masonry Workshop, School for the Building Arts, Charleston, SC (2 days)
2005 International Lime Conference, Orlando, Florida
2005 Edison Coatings Workshop, Richmond, Virginia (1 day)
2005 Historic Masonry Preservation Workshop, John Lambert, Campbell Center for Historic Preservation Studies, Mt. Carroll, Illinois (1 week)
2005 Preservation Masonry Workshop, College for the Building Arts, Charleston, SC (2 days)
2005 Masonry Analysis & Testing Workshop, Berkowitz and Jablonski, Campbell Center for Historic Preservation Studies, Mt. Carroll, Illinois (1 week)

2005 Jahn 4-Hour Workshop, Cathedral Stone Products, Columbia, SC

2006 Stone Carving and Restoration Workshop, Traditional Building Skills Institute, Snow College, Ephraim, Utah (3 days)

Memberships

American Institute for Conservation of Historic and Artistic Works
US/ICOMOS – Brick, Masonry & Ceramics Committee
Association of Preservation Technology
Preservation Trades Network
National Trust for Historic Preservation
Association of Gravestone Studies

Abstract of Cemetery Conservation/Preservation Experience (not inclusive of legal/archaeological experience):

1992 Reviewer of National Trust for Historic Preservation publication on historic cemeteries publication by Lynette Strangstad.

1998-99 Conservation activities, Maple Grove Cemetery, Maple Grove United Methodist Church, Waynesville, North Carolina.

1999 Instructor, Cemetery Preservation: Making Good Choices Workshop, Georgia Local History Conference, Augusta, Georgia.

2000 Consultation regarding maintenance and clearing of Ricefield's Woodville Cemetery, Georgetown County, South Carolina.

2000 Invited Speaker, Cemetery Conservation Techniques, Historic Cemetery Preservation Workshop, Maryland Historical Trust, Annapolis, Maryland.

2000 Preservation assessment, Summerville Cemetery, Augusta, Georgia.

2001 Assessment and preservation plan for Glenwood Cemetery, Thomaston, Georgia.

2001 Reconnaissance survey of cemeteries in Richland County, South Carolina.

2001 Instructor, Cemetery Preservation: Making Good Choices Workshop, National Preservation Institute, Washington, D.C.

2002-2003 Conservation program, Old Waxhaws Presbyterian Cemetery, Lancaster County, South Carolina.

2003 Treatment of markers at the Vardeman Cemetery, Lincoln County, Kentucky.

2003 Consultation concerning cemetery walls and pathways, Maple Grove Cemetery, Waynesville, North Carolina.

2003 Preservation assessment, Old City Cemetery, Sandersville, Georgia.

2003 Treatment of markers at Oakview and Riverside cemeteries; examination of burial vaults in white and African American sections, City of Albany, Georgia (FEMA funded).

2003 Consultation concerning cemetery brick wall, Midway Church, Midway, Georgia.

2004 Treatment of markers at Richardson Cemetery, Clarendon County, South Carolina.

2004 Instructor, Cemetery Preservation: Making Good Choices Workshop, National Preservation Institute, Washington, D.C.

2004 Consultation regarding State Historical Marker, Roseville Cemetery, Florence County, South Carolina.

2004 Consultation regarding the Mary Musgrove Monument, Musgrove Mill State Park, Laurens County, South Carolina.
2004 Invited Speaker, Cemetery Preservation Workshop, SC Genealogical Society Annual Meeting, Walterboro, South Carolina.

2004 Treatment of markers at Wrightsboro Cemetery, Thomson, Georgia.

2005 Treatment of markers at Pon Pon Cemetery, Colleton County, South Carolina.

2005 Treatment of markers at Walnut Grove Plantation, Spartanburg County, South Carolina.

2005 Consultant on cemetery fence theft, Save Austin’s Cemeteries, Austin, Texas.

2005 Treatment of markers at Richardson Cemetery (Second Phase), Clarendon County, South Carolina.

2005 Treatment of marker in Oakview Cemetery, Albany, Georgia.

2005 Instructor, Cemetery Preservation: Making Good Choices Workshop, National Preservation Institute, Las Vegas, New Mexico.

2005 Treatment of markers at Trinity Cathedral, Columbia, SC.

2005 Preliminary preservation recommendations, Randolph Cemetery, Columbia, SC.

2005 Treatment of markers in Presbyterian Cemetery, Union, SC.

2005 Instructor, Cemetery Preservation: Making Good Choices Workshop, Save Oklahoma’s Cemeteries, Muskogee, Oklahoma.

2005 Treatment of marker, Reynolds Homestead, Critz, Virginia.

2005 Assessment and preservation plan for Lewis Cemetery, King and Queen County, Virginia. King and Queen County Historical Society.

2006 Treatment of markers in Presbyterian Cemetery, Union, SC (second phase).

2006 Assessment and preservation plan for Pine Lawn Memorial Gardens, Aiken, South Carolina. SC Department of Archives and History, Columbia.

2006 Assessment of Unadilla Cemetery, Unadilla, Georgia.

2006 Invited Speaker, Planning a Cemetery Preservation Project, People and Places: South Carolina’s Seventh Annual Statewide Historic Preservation Conference, SC Department of Archives and History, Columbia, South Carolina.

2006 Assessment and Preservation Plan, Memory Hill Cemetery, Milledgeville, Georgia.
APPENDIX 1. RESUME FOR MICHAEL TRINKLEY

2006 Assessment and Preservation Plan, Springwood Cemetery, City of Greenville & Friends of Springwood Cemetery, Greenville, South Carolina.

2006 Invited Speaker, Cemetery Rehab, South Carolina Landmark Conference, SC Department of Archives and History, Aiken, South Carolina.

2006 Assessment and Preservation Plan, Naval Medical Cemetery Portsmouth Cemetery, Portsmouth, Virginia.

2006 Instructor, Cemetery Preservation: Making Good Choices Workshop, National Preservation Institute, Washington, D.C.

2006 Invited Speaker, Preservation Needs at Greenville’s Springwood Cemetery, Greenville Chapter of SC Genealogical Society, Greenville, South Carolina.

2006 Preparation of landscape plan, Randolph Cemetery, Columbia, South Carolina.

2006 Treatment of markers in the Cason Plot, Long Creek Baptist Church, Warrenton, Georgia.

2006 Treatment of markers in the Watson Plot, Thomson City Cemetery, Thomson, Georgia.

2006 Treatment of markers at Trinity Cathedral, Columbia, South Carolina (second phase).

2006 Assessment and Preservation Plan, Old Athens Cemetery, University of Georgia, Athens, Georgia.

2006 Preparation of Treatment Plan, Terrell Tomb, Sparta, Georgia.

2006 Emergency conservation treatment, Settler’s Cemetery, City of Charlotte, North Carolina.

National Register Nominations of Cemeteries

2000 National Register Nomination, King Cemetery, Charleston County, South Carolina. Submitted to South Carolina State Historic Preservation Office, SC Department of Archives and History, Columbia.

2002 National Register Nomination, Scanlonville or Remley Point Cemetery, Charleston County, South Carolina. Submitted to South Carolina State Historic Preservation Office, SC Department of Archives and History, Columbia.
<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Preliminary Information Form – Hopkins Family Cemetery, Richland County, South Carolina. Submitted to South Carolina State Historic Preservation Office, SC Department of Archives and History, Columbia.</td>
</tr>
</tbody>
</table>
APPENDIX 2. TREATMENT PROPOSALS

Below are treatment proposals for those monuments identified at the Old Athens Cemetery in need of conservation or repair. These proposals provide a photograph of the stone, fence, wall, or other monument in question; the monument’s current condition; information concerning the nature of the intervention recommended; the priority assigned the treatment; and the approximate cost of the treatment.

As explained in the body of the report, the priority recommendation is based on five levels of need:

1. Objects that are a threat to the public or in immediate threat of failure – examples include those that are unstable and in danger of falling. In these cases delayed treatment poses a risk to the public and a liability to the University. We recommend treatment within the current fiscal or calendar year.

2. Objects are a threat to themselves – examples include unstable monuments that, if ignored, will continue to deteriorate with the result that within 5 years the cost of repair will be significantly greater than the cost over the next 1-2 years.

3. Objects that require attention and deterioration is ongoing, but where delay for 2-5 years will not significantly harm the object and will present no threat to the public. Examples of this category include stones where the damage is primarily aesthetic.

4. Objects appear stable at present, but they should be re-inspected in 5-10 years to determine if the condition has changed.

5. Irreparable. These objects have either suffered so much damage or have so much fabric that repairs are not possible using available techniques.

The costs identified are based on the treatment being carried out by an AIC stone conservator, the minimum credentials that should be demanded by the University. The costs are based on 2006 salary rates and supply costs. It would be reasonable to add a minimum of 8% additional per year delay beyond 2007 (although some costs, such as chemical supplies, are escalating far more rapidly). The costs do not include travel, per diem, or lodging since these fluctuate dramatically and since the per object cost declines as more treatments are proposed.

All information given and recommended in the treatment proposals is based on our research and is believed to be accurate. However, no guarantee, either expressed or implied, is made with respect to the proposals. As stones are taken apart it is possible to discovered hidden damage.
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Name: Edward Clark Taylor

Material: ☑ marble ☐ granite ☐ brick ☑ other: reported to be Italian

Type: ☐ headstone ☐ footstone ☑ die on base ☐ tab in socket ☐ box ☐ other:

Position: ☑ fallen ☑ tilted ☐ unstable ☑ unattached/loose ☑ missing

Deterioration: ☑ broken ☑ cracked ☑ losses ☑ flaking/sugaring ☑ ferrous pins ☑ brass pins ☐ delamination/detachment ☑ spalling ☑ missing fragments ☐ other: 4 columns & bases missing

Extent: ☑ extensive >50% ☑ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☑ adhesives/coatings ☐ mortar ☐ other:

Soiling: ☑ biological ☐ staining ☐ efflorescence ☑ other: atmospheric, likely gypsum crust

Position: ☑ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☑ hand tools ☐ solvents ☐ other:

Treatment: ☑ core drill ☑ drill and pin ☐ simple adhesive repair ☐ injection grout ☑ replace bricks ☐ mortar ☑ repoint ☑ other: replace columns in order to re-establish character and scale; consolidation

Cleaning: ☑ low pressure water ☑ D/2 and flush ☑ poultice ☐ other:

Priority: 2

Cost: $2,400

Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

<table>
<thead>
<tr>
<th>Section:</th>
<th>Plot: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Edward Lampkin</td>
<td>Material: ☒ marble ☐ granite ☐ brick ☒ other: reported to be Italian</td>
</tr>
<tr>
<td>Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☒ other: obelisk</td>
<td></td>
</tr>
</tbody>
</table>

| Position: | ☐ fallen ☒ tilted ☐ unstable ☐ unattached/loose ☐ missing |

| Deterioration: | ☐ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other: |

| Extent: | ☐ extensive >50% ☐ partial 25-50% ☒ minimal <25% ☐ not applicable |

| Failed/Old Treatments: | ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other: |

| Soiling: | ☒ biological ☐ staining ☐ efflorescence ☐ other: atmospheric, probably gypsum crust |

| Position: | ☐ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound |

| Failed Treatments: | ☐ drill/grind ☐ hand tools ☐ solvents ☐ other: |

| Treatment: | ☐ core drill ☐ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: |

| Cleaning: | ☐ low pressure water ☐ D/2 and flush ☐ poultice ☐ other: |

| Priority: 4 | Cost: n/c |

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Old Athens Cemetery, Athens, GA
Fence Treatment Proposal
Section:
Plot: 3

Name: Lampkin Plot
Fence Type:
- woven wire
- gas pipe
- ornate
- other:

Type:
- hairpin
- hairpin & picket
- bow & picket
- bow & hairpin
- milled point
- other: probable wrought posts with cast metal decorative panels; set on granite plot retaining with granite coping. Ca. 20x10'

Position:
- fallen
- tilted
- unstable
- unattached/loose
- missing

Elements Present:
- 2 of 4 corner posts
- 2 of 4 line posts
- 0 of 0 gate posts
- 0 of 0 gate(s)

Deterioration:
- broken
- cracked
- losses
- corrosion
- covered in soil
- missing fragments
- other: posts set with brimstone resulting in extensive corrosion and loss

Extent:
- extensive >50%
- partial 25-50%
- minimal <25%
- not applicable

Failed/Old Treatments:
- welds
- adhesives/coatings
- ferrous metals
- other:

Foundations:
- brick
- concrete
- granite
- other:

Position:
- stabilize foundation
- reset line posts
- reset corner posts
- reset/realign gate posts/gate

Paint:
- test for lead
- air abrasion
- hand tools
- rust converter primer
- top coat alkyd flat paint (two coats)
- other:

Treatment:
- remove soil from fence bottom rails
- re-attach fence sections
- straighten sections
- caulk elements prior to painting
- other: weld extensions to posts for resetting; core drill granite for resetting; replace sulfur with epoxy; reset granite coping, level and plumb

Recast/Replace:
- describe:

Priority: 2

Cost: $2,950

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment requires 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:
Plot: 4

Name: Lampkin
Material: ☒ marble ☐ granite ☐ brick ☐ other:

Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☒ box ☐ other:

Position: ☐ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing

Deterioration: ☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☒ spalling ☐ missing fragments ☐ other: modern brick surrounds failing

Extent: ☐ extensive >50% ☒ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☒ other: modern brick w/OPC mortar

Soiling: ☒ biological ☔ staining ☐ efflorescence ☐ other:

Position: ☐ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☔ drill/grind ☐ hand tools ☔ solvents ☐ other:

Treatment: ☔ core drill ☒ drill and pin ☐ simple adhesive repair ☔ injection grout ☒ replace bricks ☐ mortar ☔ repoint ☐ other:

Cleaning: ☔ low pressure water ☒ D/2 and flush ☔ poultice ☐ other:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1,500
(3 tombs)
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

<table>
<thead>
<tr>
<th>Section:</th>
<th>Plot: 5</th>
</tr>
</thead>
</table>

Name: unknown
Material: ☒ marble ☐ granite ☐ brick ☐ other: stucco

<table>
<thead>
<tr>
<th>Type:</th>
<th>☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☜ other: obelisk w/vault</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>☐ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing</th>
</tr>
</thead>
</table>

Deterioration: ☐ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☜ other: mortar friable/sanding; extensive damage to brick vault (overall condition unknown); stucco failing; graffiti

Extent: ☐ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>☐ biological ☐ staining ☐ efflorescence ☜ other: graffiti</th>
</tr>
</thead>
</table>

Position: ☐ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☐ core drill ☐ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☜ other: remove graffiti, reapply stucco using Jahn M60; need archaeological exposure of vault

Cleaning: ☐ low pressure water ☐ D/2 and flush ☐ poultice ☐ other:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1,500
Old Athens Cemetery, Athens, GA

Fence Treatment Proposal

<table>
<thead>
<tr>
<th>Name:</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fence Type:</td>
<td>☐ woven wire ☐ gas pipe ☐ ornate ☒ other: unknown</td>
</tr>
<tr>
<td>Type:</td>
<td>☐ hairpin ☐ hairpin & picket ☐ bow & picket ☐ bow & hairpin ☐ milled point ☒ other: only cast corner posts remain; ca. 8x8'</td>
</tr>
</tbody>
</table>

Position:	☐ fallen ☒ tilted ☒ unstable ☒ unattached/loose ☒ missing
Elements Present:	4 of 4 corner posts 0 of 0 line posts 0 of ? gate posts 0 of ? gate(s)
Deterioration:	☒ broken ☒ cracked ☒ losses ☒ corrosion ☒ covered in soil ☒ missing fragments ☒ other: all posts very loose in soil and currently at different depths
Extent:	☒ extensive >50% ☒ partial 25-50% ☒ minimal <25% ☒ not applicable
Failed/Old Treatments:	☐ welds ☐ adhesives/coatings ☐ ferrous metals ☒ other:
Foundations:	☐ brick ☐ concrete ☐ granite ☒ other:

Position:	☒ stabilize foundation ☐ reset line posts ☒ reset corner posts ☐ reset/realign gate posts/gate
Paint:	☐ test for lead ☐ air abrasion ☒ hand tools ☒ rust converter primer ☒ top coat alkyd flat paint (two coats) ☒ other:
Treatment:	☐ remove soil from fence bottom rails ☐ re-attach fence sections ☐ straighten sections ☐ caulk elements prior to painting ☒ other: may be necessary to set concrete or granite supports for corners.

Treatment Strategy

Recast/Replace: ☐ describe:

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment requires 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $850
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section: Plot: 7

Name: unknown Material: ☐ marble ☐ granite ☑ brick ☑ other: failing OPC stucco

Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☑ other: semi subterranean vault

Position: ☐ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing

Deterioration: ☐ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins
☐ delamination/detachment ☐ spalling ☐ missing fragments ☑ other: stucco failing; mortar heavily deteriorated and sanding; elsewhere repointing has used a hard OPC mortar; extensive loss/displacement of brick. Brick measures 7¾x3½ x 2½ inches; tomb is ca. 10x5’

Extent: ☑ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:

Soiling: ☑ biological ☐ staining ☐ efflorescence ☐ other:

Position: ☐ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare
☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☐ core drill ☐ drill and pin ☐ simple adhesive repair ☐ injection grout ☑ replace bricks
☐ mortar ☑ repoint ☑ other: no removal of old OPC mortar; loose stucco to removed; repointing with 1:3 NHL3.5 and sand; stucco replaced with Jahn M60; stabilize structurally; if vault must be opened client to provide necessary security (work anticipated to require 5 days).

Cleaning: ☐ low pressure water ☐ D/2 and flush ☐ poultice ☐ other:

Priority: 1 Cost: $7,000

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

<table>
<thead>
<tr>
<th>Section:</th>
<th>Plot: 8</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name: Frances Farrell</th>
<th>Material:</th>
<th>☒ marble</th>
<th>☐ granite</th>
<th>☐ brick</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type:</th>
<th>☒ headstone</th>
<th>☐ footstone</th>
<th>☐ die on base</th>
<th>☐ tab in socket</th>
<th>☐ box</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>☐ fallen</th>
<th>☑ tilted</th>
<th>☐ unstable</th>
<th>☐ unattached/loose</th>
<th>☐ missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deterioration:</th>
<th>☒ broken</th>
<th>☐ cracked</th>
<th>☐ losses</th>
<th>☐ flaking/sugaring</th>
<th>☐ ferrous pins</th>
<th>☐ brass pins</th>
<th>☐ delamination/detachment</th>
<th>☐ spalling</th>
<th>☐ missing fragments</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extent:</th>
<th>☐ extensive >50%</th>
<th>☒ partial 25-50%</th>
<th>☐ minimal <25%</th>
<th>☐ not applicable</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments:</th>
<th>☐ metal</th>
<th>☐ adhesives/coatings</th>
<th>☐ mortar</th>
<th>☐ other: nylon blind pin</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>☒ biological</th>
<th>☐ staining</th>
<th>☐ efflorescence</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>☒ reset/level in ground</th>
<th>☐ reset/level to existing base</th>
<th>☐ construct new base</th>
<th>☐ resquare</th>
<th>☐ possible new base required</th>
<th>☐ stabilize foundation</th>
<th>☐ reset with 0:1:3 mix</th>
<th>☐ reset with compound</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments:</th>
<th>☐ drill/grind</th>
<th>☐ hand tools</th>
<th>☐ solvents</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Treatment:</th>
<th>☒ core drill</th>
<th>☐ drill and pin</th>
<th>☐ simple adhesive repair</th>
<th>☐ injection grout</th>
<th>☐ replace bricks</th>
<th>☐ mortar</th>
<th>☐ repoint</th>
<th>☐ other: drill out existing pins, infill with Jahn M120 Marble Mortar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cleaning:</th>
<th>☐ low pressure water</th>
<th>☒ D/2 and flush</th>
<th>☐ poultice</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Priority: 2</th>
<th>Cost: $580</th>
</tr>
</thead>
</table>

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:
Plot: 9

<table>
<thead>
<tr>
<th>Name: Winifred Aycock</th>
<th>Material: ☑ marble ☑ granite ☑ brick ☑ other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: ☑ headstone ☑ footstone ☑ die on base ☑ tab in socket ☑ box ☑ other:</td>
<td></td>
</tr>
</tbody>
</table>

| **Position:** ☑ fallen ☑ tilted ☑ unstable ☑ unattached/loose ☑ missing |
|-------------------------|--|
| **Deterioration:** ☑ broken ☑ cracked ☑ losses ☑ flaking/sugaring ☑ ferrous pins ☑ brass pins ☑ delamination/detachment ☑ spalling ☑ missing fragments ☑ other: |

| **Extent:** ☑ extensive >50% ☑ partial 25-50% ☑ minimal <25% ☑ not applicable |
|-------------------------|--|
| **Failed/Old Treatments:** ☑ metal ☑ adhesives/coatings ☑ mortar ☑ other: stone set in concrete |

| **Soiling:** ☑ biological ☑ staining ☑ efflorescence ☑ other: |

| **Position:** ☑ reset/level in ground ☑ reset/level to existing base ☑ construct new base ☑ resquare ☑ possible new base required ☑ stabilize foundation ☑ reset with 0:1:3 mix ☑ reset with compound |
|-------------------------|--|
| **Failed Treatments:** ☑ drill/grind ☑ hand tools ☑ solvents ☑ other: remove concrete; reset in pea gravel |

| **Treatment:** ☑ core drill ☑ drill and pin ☑ simple adhesive repair ☑ injection grout ☑ replace bricks ☑ mortar ☑ repoint ☑ other: |

| **Cleaning:** ☑ low pressure water ☑ D/2 and flush ☑ poultice ☑ other: |

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Cost: $150
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:
Plot: 10

Name: Mary P. Smith
Material: 🟢 marble □ granite □ brick □ other:

Type: □ headstone □ footstone □ die on base □ tab in socket □ box □ other: ledger

<table>
<thead>
<tr>
<th>Position</th>
<th>fallen</th>
<th>tilted</th>
<th>unstable</th>
<th>unattached/loose</th>
<th>missing</th>
</tr>
</thead>
</table>

Deterioration: ✗ broken □ cracked □ losses □ flaking/sugaring □ ferrous pins □ brass pins □ delamination/detachment □ spalling □ missing fragments □ other:

Extent: □ extensive >50% □ partial 25-50% □ minimal <25% □ not applicable

Failed/Old Treatments: □ metal □ adhesives/coatings □ mortar □ other:

<table>
<thead>
<tr>
<th>Soiling</th>
<th>biological</th>
<th>staining</th>
<th>efflorescence</th>
<th>other:</th>
</tr>
</thead>
</table>

Position: ✗ reset/level in ground □ reset/level to existing base ✗ construct new base □ resquare □ possible new base required □ stabilize foundation ✗ reset with 0:1:3 mix □ reset with compound

Failed Treatments: □ drill/grind □ hand tools □ solvents □ other:

Treatment: □ core drill ✗ drill and pin □ simple adhesive repair □ injection grout □ replace bricks □ mortar □ repoint □ other: infill with Jahn M120 Marble Mortar

Cleaning: □ low pressure water ✗ D/2 and flush □ poultice □ other:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $850
Old Athens Cemetery, Athens, GA
Fence Treatment Proposal

Section:
Plot: 11

Name: unknown
Fence Type:
☐ woven wire
☐ gas pipe
☒ ornate
☐ other:

Type:
☐ hairpin
☐ hairpin & picket
☐ bow & picket
☐ bow & hairpin
☐ milled point
☒ other: cast corner and line posts set on 8 granite blocks; wrought rails supporting cast elements; ca. 16x10’

Position:
☒ fallen
☒ tilted
☐ unstable
☐ unattached/loose
☒ missing

Elements Present:
4 of 4 corner posts
1 of 1 line posts
1 of 2 gate posts
portion of 1 gate(s)

Deterioration:
☒ broken
☐ cracked
☒ losses
☒ corrosion
☒ covered in soil
☐ missing fragments
☒ other: granite coping displaced; 2 of 6 caps present; gate damaged; two posts loose, require resetting

Extent:
☒ extensive >50%
☐ partial 25-50%
☐ minimal <25%
☐ not applicable

Failed/Old Treatments:
☒ welds
☐ adhesives/coatings
☐ ferrous metals
☐ other:

Foundations:
☐ brick
☐ concrete
☒ granite
☒ other: all require resetting

Position:
☒ stabilize foundation
☒ reset line posts
☒ reset corner posts
☒ reset/realign gate posts/gate

Paint:
☐ test for lead
☐ air abrasion
☒ hand tools
☒ rust converter primer
☒ top coat alkyd flat paint (two coats)
☐ other:

Treatment:
☐ remove soil from fence bottom rails
☒ re-attach fence sections
☐ straighten sections
☐ caulk elements prior to painting
☒ other: reset loose posts; install sealers for posts missing caps

Recast/Replace:
☐ describe:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP;
3) ongoing deterioration, treatment requires 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Cost: $5,800
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

<table>
<thead>
<tr>
<th>Name: Narcissus Beal</th>
<th>Material:</th>
<th>marble</th>
<th>granite</th>
<th>brick</th>
<th>other: local stone foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>headstone</td>
</tr>
<tr>
<td>Position:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deterioration:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>broken</td>
</tr>
<tr>
<td>Extent:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>extensive >50%</td>
</tr>
<tr>
<td>Failed/Old Treatments:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>metal</td>
</tr>
<tr>
<td>Soiling:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>biological</td>
</tr>
<tr>
<td>Treatment Strategy:</td>
<td>Position:</td>
<td>reset/level</td>
<td>ground</td>
<td>reset/level to existing base</td>
<td>construct new base</td>
</tr>
<tr>
<td>Failed Treatments:</td>
<td></td>
<td>drill/grind</td>
<td>hand tools</td>
<td>solvents</td>
<td>other:</td>
</tr>
<tr>
<td>Treatment:</td>
<td></td>
<td>core drill</td>
<td>drill and pin</td>
<td>simple adhesive repair</td>
<td>injection grout</td>
</tr>
<tr>
<td>Cleaning:</td>
<td></td>
<td>low pressure water</td>
<td>D/2 and flush</td>
<td>poultice</td>
<td>other:</td>
</tr>
<tr>
<td>Priority: 2</td>
<td></td>
<td>1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost: $450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:

Plot: 13

<table>
<thead>
<tr>
<th>Name: Zephaniah Beal</th>
<th>Material:</th>
<th>marble</th>
<th>granite</th>
<th>brick</th>
<th>other: local stone foundation</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type:</th>
<th>headstone</th>
<th>footstone</th>
<th>die on base</th>
<th>tab in socket</th>
<th>box</th>
<th>other: ledger on foundation</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>fallen</th>
<th>tilted</th>
<th>unstable</th>
<th>unattached/loose</th>
<th>missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deterioration:</th>
<th>broken</th>
<th>cracked</th>
<th>losses</th>
<th>flaking/sugaring</th>
<th>ferrous pins</th>
<th>brass pins</th>
<th>delamination/detachment</th>
<th>spalling</th>
<th>missing fragments</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extent:</th>
<th>extensive >50%</th>
<th>partial 25-50%</th>
<th>minimal <25%</th>
<th>not applicable</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments:</th>
<th>metal</th>
<th>adhesives/coatings</th>
<th>mortar</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>biological</th>
<th>staining</th>
<th>efflorescence</th>
<th>other:</th>
</tr>
</thead>
</table>

Existing Condition

<table>
<thead>
<tr>
<th>Position:</th>
<th>reset/level in ground</th>
<th>reset/level to existing base</th>
<th>construct new base</th>
<th>resquare</th>
<th>possible new base required</th>
<th>stabilize foundation</th>
<th>reset with 0:1:3 mix</th>
<th>reset with compound</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments:</th>
<th>drill/grind</th>
<th>hand tools</th>
<th>solvents</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Treatment:</th>
<th>core drill</th>
<th>drill and pin</th>
<th>simple adhesive repair</th>
<th>injection grout</th>
<th>replace bricks</th>
<th>mortar</th>
<th>repoint</th>
<th>other: infill with Jahn</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cleaning:</th>
<th>low pressure water</th>
<th>D/2 and flush</th>
<th>poultice</th>
<th>other:</th>
</tr>
</thead>
</table>

Treatment Strategy

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $850
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:
Plot: 14

Name: Rebekah Bostick
Material: ☒ marble ☐ granite ☐ brick ☐ other: local stone foundation

Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other: ledger on foundation

Position: ☐ fallen ☒ tilted ☒ unstable ☐ unattached/loose ☐ missing

Deterioration: ☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins
☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other:

Extent: ☒ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:

Soiling: ☒ biological ☐ staining ☐ efflorescence ☐ other:

Existing Condition

Position: ☐ reset/level in ground ☒ reset/level to existing base ☐ construct new base ☐ resquare
☐ possible new base required ☒ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☒ core drill ☒ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks
☐ mortar ☐ repoint ☐ other:

Cleaning: ☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1200
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:

| Name: | unknown | **Material:** | marble | granite | brick | other: |

| Type: | headstone | footstone | die on base | tab in socket | box | other: |

| Position: | fallen | tilted | unstable | unattached/loose | missing |

| Deterioration: | broken | cracked | losses | flaking/sugaring | ferrous pins | brass pins | delamination/detachment | spalling | missing fragments | other: |

| Extent: | extensive >50% | partial 25-50% | minimal <25% | not applicable |

| Failed/Old Treatments: | metal | adhesives/coatings | mortar | other: |

| Soiling: | biological | staining | efflorescence | other: |

| Position: | reset/level in ground | reset/level to existing base | construct new base | resquare | possible new base required | stabilize foundation | reset with 0:1:3 mix | reset with compound |

| Failed Treatments: | drill/grind | hand tools | solvents | other: |

| Treatment: | core drill | drill and pin | simple adhesive repair | injection grout | replace bricks | mortar | repoint | other: infill with Jahn M120 Marble Mortar |

| Cleaning: | low pressure water | D/2 and flush | poultice | other: |

Priority: 3

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $850
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:
Plot: 16

Name: Samuel Maxwell
Material: ☒ marble ☐ granite ☐ brick ☐ other:

Type: ☒ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:

Position: ☐ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing

Deterioration: ☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins
☐ delamination/detachment ☐ spalling ☐ missing fragments ☒ other: failed repair (top in storage)

Extent: ☐ extensive >50% ☒ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☒ other: nylon blind pin repair

Soiling: ☒ biological ☐ staining ☐ efflorescence ☐ other:

Position: ☒ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare
☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☐ core drill ☒ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks
☐ mortar ☐ repoint ☒ other: drill out nylon pins; use Jahn M120 Marble Mortar for infill

Cleaning: ☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other:

Priority: 2
Cost: $550

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section: Plot: 17-26 wall

<table>
<thead>
<tr>
<th>Name:</th>
<th>Material:</th>
<th>marble</th>
<th>granite</th>
<th>brick</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type:</th>
<th>headstone</th>
<th>footstone</th>
<th>die on base</th>
<th>tab in socket</th>
<th>box</th>
<th>other: plot wall</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>fallen</th>
<th>tilted</th>
<th>unstable</th>
<th>unattached/loose</th>
<th>missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deterioration:</th>
<th>broken</th>
<th>cracked</th>
<th>losses</th>
<th>flaking/sugaring</th>
<th>ferrous pins</th>
<th>brass pins</th>
<th>delamination/detachment</th>
<th>spalling</th>
<th>missing fragments</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extent:</th>
<th>extensive</th>
<th>partial</th>
<th>minimal</th>
<th>not applicable</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments:</th>
<th>metal</th>
<th>adhesives/coatings</th>
<th>mortar</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>biological</th>
<th>staining</th>
<th>efflorescence</th>
<th>other:</th>
</tr>
</thead>
</table>

Existing Condition

<table>
<thead>
<tr>
<th>Position:</th>
<th>reset/level in ground</th>
<th>reset/level to existing base</th>
<th>construct new base</th>
<th>ressquare</th>
<th>possible new base required</th>
<th>stabilize foundation</th>
<th>reset with 0:1:3 mix</th>
<th>reset with compound</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments:</th>
<th>drill/grind</th>
<th>hand tools</th>
<th>solvents</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Treatment:</th>
<th>core drill</th>
<th>drill and pin</th>
<th>simple adhesive repair</th>
<th>injection grout</th>
<th>replace bricks</th>
<th>mortar</th>
<th>repoint</th>
<th>other: only one copping block remaining - resel</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cleaning:</th>
<th>low pressure water</th>
<th>D/2 and flush</th>
<th>poultice</th>
<th>other:</th>
</tr>
</thead>
</table>

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $2200
Old Athens Cemetery, Athens, GA

Monument Treatment Proposal

Section:

Plot: 17

Name: Sallie E. Johnson

Material:
- ☒ marble
- ☐ granite
- ☐ brick
- ☐ other:

Type:
- ☐ headstone
- ☐ footstone
- ☐ die on base
- ☐ tab in socket
- ☒ box
- ☐ other:

Position:
- ☐ fallen
- ☐ tilted
- ☐ unstable
- ☒ unattached/loose
- ☐ missing

Deterioration:
- ☒ broken
- ☐ cracked
- ☐ losses
- ☐ flaking/sugaring
- ☐ ferrous pins
- ☐ brass pins
- ☐ delamination/detachment
- ☐ spalling
- ☐ missing fragments
- ☐ other:

Extent:
- ☐ extensive >50%
- ☒ partial 25-50%
- ☐ minimal <25%
- ☐ not applicable

Failed/Old Treatments:
- ☐ metal
- ☐ adhesives/coatings
- ☐ mortar
- ☒ other: nylon pins in ledger

Soiling:
- ☒ biological
- ☐ staining
- ☐ efflorescence
- ☐ other:

Existing Condition

Position:
- ☒ reset/level in ground
- ☒ reset/level to existing base
- ☐ construct new base
- ☐ resquare
- ☐ possible new base required
- ☐ stabilize foundation
- ☐ reset with 0:1:3 mix
- ☐ reset with compound

Failed Treatments:
- ☐ drill/grind
- ☐ hand tools
- ☐ solvents
- ☐ other:

Treatment:
- ☐ core drill
- ☐ drill and pin
- ☐ simple adhesive repair
- ☐ injection grout
- ☐ replace bricks
- ☐ mortar
- ☐ repoint
- ☒ other: core drill old pins; infill with Jahn M120 Marble Mortar

Cleaning:
- ☐ low pressure water
- ☒ D/2 and flush
- ☐ poultice
- ☐ other:

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $900
Old Athens Cemetery, Athens, GA

Monument Treatment Proposal

Section:

Plot: 18

| Name: unknown | Material: ☒ marble ☐ granite ☐ brick ☐ other: |
| Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☒ box ☐ other: |
| **Position:** ☐ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing |
| **Deterioration:** ☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other: |
| **Extent:** ☒ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable |
| **Failed/Old Treatments:** ☐ metal ☐ adhesives/coatings ☐ mortar ☒ other: Portland cement |
| **Soiling:** ☒ biological ☐ staining ☐ efflorescence ☐ other: |

Existing Condition

| **Position:** ☐ reset/level in ground ☒ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☒ reset with 0:1:3 mix ☐ reset with compound |
| **Failed Treatments:** ☐ drill/grind ☒ hand tools ☐ solvents ☐ other: |
| **Treatment:** ☒ core drill ☒ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☒ other: remove OPC; infill with Jahn M120 Marble Mortar |
| **Cleaning:** ☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other: |

Treatment Strategy

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Priority: 2

Cost: $1100
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal
Section:
Plot: 19

Name: unknown
Material: ☒ marble ☐ granite ☐ brick ☐ other:

Type: ☒ headstone ☒ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:

Position: ☐ fallen ☐ tilted ☒ unstable ☐ unattached/loose ☐ missing

Deterioration: ☐ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins
☐ delamination/detachment ☐ spalling ☒ missing fragments ☐ other:

Extent: ☐ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:

Soiling: ☒ biological ☐ staining ☐ efflorescence ☐ other:

Existing Condition

Position: ☐ reset/level in ground ☒ reset/level to existing base ☐ construct new base ☐ resquare
☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☐ core drill ☐ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks
☐ mortar ☐ repoint ☐ other: collect loose fragments if not part of this stone

Cleaning: ☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $300
Old Athens Cemetery, Athens, GA

Monument Treatment Proposal

<table>
<thead>
<tr>
<th>Section:</th>
<th>Plot: 20</th>
</tr>
</thead>
</table>

Name: Julia Emeline Lyle
Material: ☒ marble ☐ granite ☐ brick ☐ other:
Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other: ledger
Position: ☐ fallen ☐ tilted ☐ unstable ☒ unattached/loose ☐ missing
Deterioration: ☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other:
Extent: ☒ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable
Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☒ other: Portland cement
Soiling: ☒ biological ☐ staining ☐ efflorescence ☐ other:

Existing Condition

Position: ☐ reset/level in ground ☒ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☒ reset with 0:1:3 mix ☐ reset with compound
Failed Treatments: ☐ drill/grind ☒ hand tools ☐ solvents ☐ other:
Treatment: ☒ core drill ☒ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☒ other: remove OPC; infill with Jahn M120 Marble Mortar
Cleaning: ☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Cost: $1400
Old Athens Cemetery, Athens, GA

Monument Treatment Proposal

Section:

Plot: 21

<table>
<thead>
<tr>
<th>Name: unknown</th>
<th>Material: ☑ marble ☐ granite ☐ brick ☐ other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: ☑ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:</td>
<td></td>
</tr>
<tr>
<td>Position: ☑ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing</td>
<td></td>
</tr>
<tr>
<td>Deterioration: ☑ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other:</td>
<td></td>
</tr>
<tr>
<td>Extent: ☑ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable</td>
<td></td>
</tr>
<tr>
<td>Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:</td>
<td></td>
</tr>
<tr>
<td>Soiling: ☑ biological ☐ staining ☐ efflorescence ☐ other:</td>
<td></td>
</tr>
<tr>
<td>Position: ☑ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound</td>
<td></td>
</tr>
<tr>
<td>Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:</td>
<td></td>
</tr>
<tr>
<td>Treatment: ☑ core drill ☑ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: infill with Jahn M120 Marble Mortar</td>
<td></td>
</tr>
<tr>
<td>Cleaning: ☐ low pressure water ☑ D/2 and flush ☐ poultice ☐ other:</td>
<td></td>
</tr>
</tbody>
</table>

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $950
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal
Section:
Plot: 22

<table>
<thead>
<tr>
<th>Name: William Elijah</th>
<th>Material:</th>
<th>marble</th>
<th>granite</th>
<th>brick</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type:</th>
<th>headstone</th>
<th>footstone</th>
<th>die on base</th>
<th>tab in socket</th>
<th>box</th>
<th>other: ledger</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>fallen</th>
<th>tilted</th>
<th>unstable</th>
<th>unattached/loose</th>
<th>missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deterioration:</th>
<th>broken</th>
<th>cracked</th>
<th>losses</th>
<th>flaking/sugaring</th>
<th>ferrous pins</th>
<th>brass pins</th>
<th>delamination/detachment</th>
<th>spalling</th>
<th>missing fragments</th>
<th>other: foundation slumping & broken</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extent:</th>
<th>extensive >50%</th>
<th>partial 25-50%</th>
<th>minimal <25%</th>
<th>not applicable</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments:</th>
<th>metal</th>
<th>adhesives/coatings</th>
<th>mortar</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>biological</th>
<th>staining</th>
<th>efflorescence</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>reset/level in ground</th>
<th>reset/level to existing base</th>
<th>construct new base</th>
<th>resquare</th>
<th>possible new base required</th>
<th>stabilize foundation</th>
<th>reset with 0:1:3 mix</th>
<th>reset with compound</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments:</th>
<th>drill/grind</th>
<th>hand tools</th>
<th>solvents</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Treatment:</th>
<th>core drill</th>
<th>drill and pin</th>
<th>simple adhesive repair</th>
<th>injection grout</th>
<th>replace bricks</th>
<th>mortar</th>
<th>repoint</th>
<th>other: relevel and reset existing foundation before ledger breaks</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cleaning:</th>
<th>low pressure water</th>
<th>D/2 and flush</th>
<th>poultice</th>
<th>other:</th>
</tr>
</thead>
</table>

| Priority: | 2 | 1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable |

| Cost: | $900 |
Monument Treatment Proposal

Old Athens Cemetery, Athens, GA

Name: William Elijah
Material: □ marble □ granite □ brick □ other: □

Type: □ headstone □ footstone □ die on base □ tab in socket □ box □ other: ledger

Position: □ fallen □ tilted □ unstable □ unattached/loose □ missing

Deterioration: □ broken □ cracked □ losses □ flaking/sugaring □ ferrous pins □ brass pins □ delamination/detachment □ spalling □ missing fragments □ other:

Extent: □ extensive >50% □ partial 25-50% □ minimal <25% □ not applicable

Failed/Old Treatments: □ metal □ adhesives/coatings □ mortar □ other:

Soiling: □ biological □ staining □ efflorescence □ other:

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1200
Monument Treatment Proposal

Old Athens Cemetery, Athens, GA

Section: Plot: 24

<table>
<thead>
<tr>
<th>Name: Frances Mily</th>
<th>Material: □ marble □ granite □ brick □ other: □ □ □</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: □ headstone □ footstone □ die on base □ tab in socket □ box □ other: ledger</td>
<td></td>
</tr>
<tr>
<td>Position:</td>
<td>■ fallen □ tilted □ unstable □ unattached/loose □ missing</td>
</tr>
<tr>
<td>Deterioration:</td>
<td>□ broken □ cracked □ losses □ flaking/sugaring □ ferrous pins □ brass pins □ delamination/detachment □ spalling □ missing fragments □ other:</td>
</tr>
<tr>
<td>Extent:</td>
<td>□ extensive >50% □ partial 25-50% □ minimal <25% □ not applicable</td>
</tr>
<tr>
<td>Failed/Old Treatments:</td>
<td>□ metal □ adhesives/coatings □ mortar □ other:</td>
</tr>
<tr>
<td>Soiling:</td>
<td>□ biological □ staining □ efflorescence □ other:</td>
</tr>
<tr>
<td>Position:</td>
<td>□ reset/level in ground □ reset/level to existing base □ construct new base □ resquare □ possible new base required □ stabilize foundation □ resquare with 0:1:3 mix □ resquare with compound</td>
</tr>
<tr>
<td>Failed Treatments:</td>
<td>□ drill/grind □ hand tools □ solvents □ other:</td>
</tr>
<tr>
<td>Treatment:</td>
<td>□ core drill □ drill and pin □ simple adhesive repair □ injection grout □ replace bricks □ mortar □ repoint □ other: infill with Jahn M120 Marble Mortar</td>
</tr>
<tr>
<td>Cleaning:</td>
<td>□ low pressure water □ D/2 and flush □ poultice □ other:</td>
</tr>
<tr>
<td>Priority: 2</td>
<td>Cost: $550</td>
</tr>
</tbody>
</table>

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:
Plot: 25

<table>
<thead>
<tr>
<th>Name: Mary</th>
<th>Material: □ marble □ granite □ brick □ other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>□ headstone □ footstone □ die on base □ tab in socket □ box □ other: ledger</td>
</tr>
<tr>
<td>Position:</td>
<td>□ fallen □ tilted □ unstable □ unattached/loose □ missing</td>
</tr>
<tr>
<td>Deterioration:</td>
<td>□ broken □ cracked □ losses □ flaking/sugaring □ ferrous pins □ brass pins □ delamination/detachment □ spalling □ missing fragments □ other:</td>
</tr>
<tr>
<td>Extent:</td>
<td>□ extensive >50% □ partial 25-50% □ minimal <25% □ not applicable</td>
</tr>
<tr>
<td>Failed/Old Treatments:</td>
<td>□ metal □ adhesives/coatings □ mortar □ other:</td>
</tr>
<tr>
<td>Soiling:</td>
<td>□ biological □ staining □ efflorescence □ other:</td>
</tr>
<tr>
<td>Position:</td>
<td>□ reset/level in ground □ reset/level to existing base □ construct new base □ resquare □ possible new base required □ stabilize foundation □ reset with 0:1:3 mix □ reset with compound</td>
</tr>
<tr>
<td>Failed Treatments:</td>
<td>□ drill/grind □ hand tools □ solvents □ other:</td>
</tr>
<tr>
<td>Treatment:</td>
<td>□ core drill □ drill and pin □ simple adhesive repair □ injection grout □ replace bricks □ mortar □ repoint □ other: infill with Jahn M120 Marble Mortar</td>
</tr>
<tr>
<td>Cleaning:</td>
<td>□ low pressure water □ D/2 and flush □ poultice □ other:</td>
</tr>
</tbody>
</table>

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1200
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:
Plot: 26

Name: Joseph []
Material:
- [x] marble
- [] granite
- [] brick
- [] other:

Type:
- [] headstone
- [] footstone
- [] die on base
- [] tab in socket
- [] box
- [x] other: ledger

Position:
- [] fallen
- [] tilted
- [] unstable
- [x] unattached/loose
- [] missing

Deterioration:
- [x] broken
- [] cracked
- [] losses
- [] flaking/sugaring
- [] ferrous pins
- [] brass pins
- [] delamination/detachment
- [] spalling
- [] missing fragments
- [] other:

Extent:
- [x] extensive >50%
- [] partial 25-50%
- [] minimal <25%
- [] not applicable

Failed/Old Treatments:
- [] metal
- [] adhesives/coatings
- [] mortar
- [] other:

Soiling:
- [x] biological
- [] staining
- [] efflorescence
- [] other:

Position:
- [] reset/level in ground
- [x] reset/level to existing base
- [] construct new base
- [] resquare
- [x] possible new base required
- [] stabilize foundation
- [x] reset with 0:1:3 mix
- [] reset with compound

Failed Treatments:
- [] drill/grind
- [] hand tools
- [] solvents
- [] other:

Treatment:
- [x] core drill
- [x] drill and pin
- [] simple adhesive repair
- [] injection grout
- [] replace bricks
- [] mortar
- [] repoint
- [] other:

Cleaning:
- [] low pressure water
- [x] D/2 and flush
- [] poultice
- [] other:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1200
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:
Plot: 27

Name: Elizabeth R. Barrett
Material: ☒ marble ☐ granite ☐ brick ☐ other:

Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other: ledger

Position: ☐ fallen ☐ tilted ☐ unstable ☒ unattached/loose ☐ missing

Deterioration: ☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☒ missing fragments ☐ other:

Extent: ☐ extensive >50% ☒ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☒ other: Portland cement

Soiling: ☒ biological ☒ staining ☐ efflorescence ☐ other:

Existing Condition

Position: ☑ reset/level in ground ☒ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☐ core drill ☒ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☒ other: infill with Jahn M120 Marble Mortar

Cleaning: ☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other:

Priority: 2

Cost: $950

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Monument Treatment Proposal

Old Athens Cemetery, Athens, GA

Section:

Plot: 28

<table>
<thead>
<tr>
<th>Name: Sarah Wallis</th>
<th>Material:</th>
<th>☒ marble</th>
<th>☐ granite</th>
<th>☐ brick</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type:</th>
<th>☐ headstone</th>
<th>☐ footstone</th>
<th>☐ die on base</th>
<th>☐ tab in socket</th>
<th>☐ box</th>
<th>☒ other: ledger</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>☐ fallen</th>
<th>☐ tilted</th>
<th>☐ unstable</th>
<th>☒ unattached/loose</th>
<th>☐ missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deterioration:</th>
<th>☐ broken</th>
<th>☒ cracked</th>
<th>☐ losses</th>
<th>☐ flaking/sugaring</th>
<th>☐ ferrous pins</th>
<th>☐ brass pins</th>
<th>☐ delamination/detachment</th>
<th>☐ spalling</th>
<th>☐ missing fragments</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extent:</th>
<th>☐ extensive >50%</th>
<th>☐ partial 25-50%</th>
<th>☒ minimal <25%</th>
<th>☐ not applicable</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments:</th>
<th>☐ metal</th>
<th>☐ adhesives/coatings</th>
<th>☐ mortar</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>☒ biological</th>
<th>☐ staining</th>
<th>☐ efflorescence</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>☐ reset/level in ground</th>
<th>☒ reset/level to existing base</th>
<th>☐ construct new base</th>
<th>☐ resquare</th>
<th>☐ possible new base required</th>
<th>☐ stabilize foundation</th>
<th>☒ reset with 0:1:3 mix</th>
<th>☐ reset with compound</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments:</th>
<th>☐ drill/grind</th>
<th>☐ hand tools</th>
<th>☐ solvents</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Treatment:</th>
<th>☒ core drill</th>
<th>☐ drill and pin</th>
<th>☐ simple adhesive repair</th>
<th>☐ injection grout</th>
<th>☐ replace bricks</th>
<th>☐ mortar</th>
<th>☐ repoint</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cleaning:</th>
<th>☐ low pressure water</th>
<th>☘ D/2 and flush</th>
<th>☐ poultice</th>
<th>☐ other:</th>
</tr>
</thead>
</table>

| **Priority:** | 3 | 1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable |
|---------------|---|----------------------------|----------------|---------|

<table>
<thead>
<tr>
<th>Cost:</th>
<th>$250</th>
</tr>
</thead>
</table>

![Image](image_url)
Old Athens Cemetery, Athens, GA

Monument Treatment Proposal

<table>
<thead>
<tr>
<th>Section:</th>
<th>Plot: 29</th>
</tr>
</thead>
</table>

Name: David Thomas
Material: ■ marble □ granite □ brick □ other:
Type: □ headstone □ footstone □ die on base □ tab in socket □ box □ other: possibly box covered in OPC

<table>
<thead>
<tr>
<th>Position:</th>
<th>fallen □ tilted □ unstable □ unattached/loose □ missing</th>
</tr>
</thead>
</table>

Deterioration: □ broken □ cracked □ losses □ flaking/sugaring □ ferrous pins □ brass pins □ delamination/detachment □ spalling □ missing fragments □ other:

<table>
<thead>
<tr>
<th>Extent:</th>
<th>extensive >50% □ partial 25-50% □ minimal <25% □ not applicable</th>
</tr>
</thead>
</table>

Failed/Old Treatments: □ metal □ adhesives/coatings □ mortar □ other:

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>biological □ staining □ efflorescence □ other:</th>
</tr>
</thead>
</table>

Position: □ reset/level in ground □ reset/level to existing base □ construct new base □ resquare □ possible new base required □ stabilize foundation □ resquare with 0:1:3 mix □ resquare with compound

Failed Treatments: □ drill/grind □ hand tools □ solvents □ other:

Treatment: □ core drill □ drill and pin □ simple adhesive repair □ injection grout □ replace bricks □ mortar □ repoint □ other:

Cleaning: □ low pressure water □ D/2 and flush □ poultice □ other:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $300
<table>
<thead>
<tr>
<th>Old Athens Cemetery, Athens, GA</th>
<th>Monument Treatment Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Elizabeth Griswold</td>
<td>Material: ☑ marble ☐ granite ☐ brick ☐ other:</td>
</tr>
<tr>
<td>Type: ☑ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:</td>
<td></td>
</tr>
<tr>
<td>Position: ☑ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing</td>
<td></td>
</tr>
<tr>
<td>Deterioration: ☑ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☑ missing fragments ☐ other:</td>
<td></td>
</tr>
<tr>
<td>Extent: ☑ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable</td>
<td></td>
</tr>
<tr>
<td>Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:</td>
<td></td>
</tr>
<tr>
<td>Soiling: ☑ biological ☑ staining ☑ efflorescence ☐ other:</td>
<td></td>
</tr>
<tr>
<td>Position: ☑ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound</td>
<td></td>
</tr>
<tr>
<td>Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:</td>
<td></td>
</tr>
<tr>
<td>Treatment: ☑ core drill ☑ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☑ mortar ☑ repoint ☐ other: infill with Jahn M120 Marble Mortar</td>
<td></td>
</tr>
<tr>
<td>Cleaning: ☑ low pressure water ☑ D/2 and flush ☑ poultice ☐ other:</td>
<td></td>
</tr>
<tr>
<td>Priority: 2</td>
<td>Cost: $800</td>
</tr>
</tbody>
</table>

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Name: Clementina Brown Golding
Material: ☒ marble ☐ granite ☐ brick ☐ other:

Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other: ledger

Position: ☐ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing

Deterioration: ☐ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other:

Extent: ☐ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:

Soiling: ☐ biological ☐ staining ☐ efflorescence ☐ other:

Position: ☐ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☐ core drill ☐ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other:

Cleaning: ☐ low pressure water ☐ D/2 and flush ☐ poultice ☐ other:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $300
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:

Plot: 32

<table>
<thead>
<tr>
<th>Name:</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material:</td>
<td>☑ marble ☐ granite ☐ brick ☐ other:</td>
</tr>
<tr>
<td>Type:</td>
<td>☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☑ box ☐ other:</td>
</tr>
</tbody>
</table>

Position:	☐ fallen ☑ tilted ☑ unstable ☐ unattached/loose ☐ missing
Deterioration:	☐ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☑ missing fragments ☐ other:
Extent:	☑ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable
Failed/Old Treatments:	☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:
Soiling:	☑ biological ☑ staining ☑ efflorescence ☐ other:

Position:	☑ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☑ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound
Failed Treatments:	☐ drill/grind ☐ hand tools ☐ solvents ☐ other:
Treatment:	☑ core drill ☑ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: replace two missing corners that serve to tie together side and end panels
Cleaning:	☐ low pressure water ☑ D/2 and flush ☐ poultice ☐ other:

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1850
| Old Athens Cemetery, Athens, GA |
| Monument Treatment Proposal |

Section:

Plot: 33

Name: Asa B. Daniel

Material: ✗ marble □ granite □ brick □ other:

Type: □ headstone □ footstone □ die on base □ tab in socket □ box ✗ other: ledger

Position: □ fallen □ tilted □ unstable ✗ unattached/loose □ missing

Deterioration: ✗ broken □ cracked □ losses □ flaking/sugaring □ ferrous pins □ brass pins □ delamination/detachment □ spalling □ missing fragments □ other:

Extent: ✗ extensive >50% □ partial 25-50% □ minimal <25% □ not applicable

Failed/Old Treatments: □ metal □ adhesives/coatings □ mortar □ other:

Soiling: ✗ biological □ staining □ efflorescence □ other:

Position: □ reset/level in ground ✗ reset/level to existing base □ construct new base □ resquare □ possible new base required □ stabilize foundation ✗ reset with 0:1:3 mix □ reset with compound

Failed Treatments: □ drill/grind □ hand tools □ solvents □ other:

Treatment: □ core drill ✗ drill and pin □ simple adhesive repair □ injection grout □ replace bricks □ mortar □ repoint □ other: infill with Jahn M120 Marble Mortar

Cleaning: □ low pressure water ✗ D/2 and flush □ poultice □ other:

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $900
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal
Name: [] Dougherty

<table>
<thead>
<tr>
<th>Material</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>marble</td>
<td>X</td>
<td>granite</td>
<td>X</td>
<td>brick</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>headstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fallen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deterioration</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>broken</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extent</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>extensive >50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>metal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soiling</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>biological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Existing Condition</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reset/level in ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>drill/grind</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment Strategy</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>drill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple adhesive repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cleaning</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>low pressure water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priority</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:

Plot: 35

Name: [] Meriwether

Material: ☒ marble ☐ granite ☐ brick ☐ other:

Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☒ other: ledger

<table>
<thead>
<tr>
<th>Position</th>
<th>fallen</th>
<th>tilted</th>
<th>unstable</th>
<th>unattached/loose</th>
<th>missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterioration:</td>
<td>☒ broken</td>
<td>☐ cracked</td>
<td>☐ losses</td>
<td>☐ flaking/sugaring</td>
<td>☐ ferrous pins</td>
</tr>
<tr>
<td>Extent:</td>
<td>☒ extensive >50%</td>
<td>☐ partial 25-50%</td>
<td>☐ minimal <25%</td>
<td>☐ not applicable</td>
<td></td>
</tr>
<tr>
<td>Failed/Old Treatments:</td>
<td>☐ metal</td>
<td>☐ adhesives/coatings</td>
<td>☐ mortar</td>
<td>☐ other:</td>
<td></td>
</tr>
<tr>
<td>Soiling:</td>
<td>☒ biological</td>
<td>☐ staining</td>
<td>☐ efflorescence</td>
<td>☐ other:</td>
<td></td>
</tr>
</tbody>
</table>

Existing Condition

Position: ☐ reset/level in ground ☒ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☒ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☐ core drill ☒ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: infill with Jahn M120 Marble Mortar; injection grout may be necessary

Cleaning: ☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other:

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1100
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:
Plot: 36

Name: unknown

Material:
- [] marble
- [] granite
- [] brick
- [X] other:

Type:
- [] headstone
- [] footstone
- [X] die on base
- [] tab in socket
- [] box
- [X] other:

Position:
- [X] fallen
- [] tilted
- [] unstable
- [X] unattached/loose
- [] missing

Deterioration:
- [X] broken
- [] cracked
- [] losses
- [] flaking/sugaring
- [] ferrous pins
- [] brass pins
- [] delamination/detachment
- [] spalling
- [] missing fragments
- [] other:

Extent:
- [X] extensive >50%
- [] partial 25-50%
- [] minimal <25%
- [] not applicable

Failed/Old Treatments:
- [] metal
- [] adhesives/coatings
- [] mortar
- [X] other: nylon pins

Soiling:
- [X] biological
- [X] staining
- [] efflorescence
- [] other:

Position:
- [] reset/level in ground
- [X] reset/level to existing base
- [] construct new base
- [] resquare
- [] possible new base required
- [] stabilize foundation
- [X] reset with 0:1:3 mix
- [] reset with compound

Failed Treatments:
- [] drill/grind
- [] hand tools
- [] solvents
- [X] other: remove nylon pins

Treatment:
- [X] core drill
- [X] drill and pin
- [X] simple adhesive repair
- [X] injection grout
- [X] replace bricks
- [] mortar
- [] repoint
- [] other: infill with Jahn M120 Marble Mortar

Cleaning:
- [] low pressure water
- [X] D/2 and flush
- [] poultice
- [] other:

Priority: 2
Cost: $1300

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Old Athens Cemetery, Athens, GA
Fence Treatment Proposal

<table>
<thead>
<tr>
<th>Name: unknown</th>
<th>Fence Type:</th>
<th>woven wire</th>
<th>gas pipe</th>
<th>ornate</th>
<th>other: unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: hairpin</td>
<td>hairpin & picket</td>
<td>bow & picket</td>
<td>bow & hairpin</td>
<td>milled point</td>
<td>other: unknown</td>
</tr>
</tbody>
</table>

- **Position:** fallen, tilted, unstable, unattached/loose, missing
- **Elements Present:** 2 of 4 corner posts, 0 of 0 line posts, 0 of 0 gate posts, 0 of 0 gate(s)
- **Deterioration:** broken, cracked, losses, corrosion, covered in soil, missing fragments

 - other: one post is a replacement; match is marginally acceptable; much loss from soil burial; five pickets are missing
- **Extent:** extensive >50%, partial 25-50%, minimal <25%, not applicable
- **Failed/Old Treatments:** welds, adhesives/coatings, ferrous metals, other:
- **Foundations:** brick, concrete, granite, other:

- **Position:** stabilize foundation, reset line posts, reset corner posts, reset/realign gate posts/gate
- **Paint:** test for lead, air abrasion, hand tools, rust converter primer, top coat alkyd flat paint (two coats), other:

- **Treatment:** remove soil from fence bottom rails, re-attach fence sections, straighten sections

 - caulk elements prior to painting, other: will be necessary to stabilize soil to prevent future erosion and covering of fence bottom rail – all work to be performed within scope of repairs

- **Recast/Replace:** describe:

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP;
3) ongoing deterioration, treatment requires 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $950
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:

Plot: 38

Name: Abner Graham

Material:
- marble
- granite
- brick
- other:

Type:
- headstone
- footstone
- die on base
- tab in socket
- box
- other:

Position:
- fallen
- tilted
- unstable
- unattached/loose
- missing

Deterioration:
- broken
- cracked
- losses
- flaking/sugaring
- ferrous pins
- brass pins
- delamination/detachment
- spalling
- missing fragments
- other:

Extent:
- extensive >50%
- partial 25-50%
- minimal <25%
- not applicable

Failed/Old Treatments:
- metal
- adhesives/coatings
- mortar
- other:

Existing Condition

Soiling:
- biological
- staining
- efflorescence
- other:

Position:
- reset/level in ground
- reset/level to existing base
- construct new base
- resquare
- possible new base required
- stabilize foundation
- reset with 0:1:3 mix
- reset with compound

Failed Treatments:
- drill/grind
- hand tools
- solvents
- other:

Treatment:
- core drill
- drill and pin
- simple adhesive repair
- injection grout
- replace bricks
- mortar
- repoint
- other: cast OPC lid for box – remaining ledger set on this lid; infill with Jahn M120 Marble Mortar; replace lost dogs with 316 stainless steel

Cleaning:
- low pressure water
- D/2 and flush
- poultice
- other:

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1800
Monument Treatment Proposal

Location: Old Athens Cemetery, Athens, GA
Section:
Plot: 39

Name: Martha Graham
Material: ✓ marble □ granite □ brick □ other:
Type: □ headstone □ footstone □ die on base □ tab in socket □ box ✓ other: ledger

<table>
<thead>
<tr>
<th>Position</th>
<th>Fallen</th>
<th>Tilted</th>
<th>Unstable</th>
<th>Unattached/Loose</th>
<th>Missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deterioration</th>
<th>Broken</th>
<th>Cracked</th>
<th>Losses</th>
<th>Flaking/Sugaring</th>
<th>Ferrous Pins</th>
<th>Brass Pins</th>
<th>Delamination/Detachment</th>
<th>Spalling</th>
<th>Missing Fragments</th>
<th>Other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extent</th>
<th>Extensive >50%</th>
<th>Partial 25-50%</th>
<th>Minimal <25%</th>
<th>Not Applicable</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments</th>
<th>Metal</th>
<th>Adhesives/Coatings</th>
<th>Mortar</th>
<th>Other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soiling</th>
<th>Biological</th>
<th>Staining</th>
<th>Efflorescence</th>
<th>Other:</th>
</tr>
</thead>
</table>

Current Condition

<table>
<thead>
<tr>
<th>Position</th>
<th>Reset/Level in Ground</th>
<th>Reset/Level to Existing Base</th>
<th>Construct New Base</th>
<th>Resquare</th>
<th>Possible New Base Required</th>
<th>Stabilize Foundation</th>
<th>Reset with 0:1:3 Mix</th>
<th>Reset with Compound</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments</th>
<th>Drill/Grind</th>
<th>Hand Tools</th>
<th>Solvents</th>
<th>Other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Core Drill</th>
<th>Drill and Pin</th>
<th>Simple Adhesive Repair</th>
<th>Injection Grout</th>
<th>Replace Bricks</th>
<th>Mortar</th>
<th>Repoint</th>
<th>Other: Infill with Jahn M120 Marble Mortar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cleaning</th>
<th>Low Pressure Water</th>
<th>D/2 and Flush</th>
<th>Poultice</th>
<th>Other:</th>
</tr>
</thead>
</table>

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1050
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section: Plot: 40

Name: unknown Material: ☑ marble ☐ granite ☐ brick ☐ other:

Type: ☑ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:

Position: ☐ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing

Deterioration: ☑ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other:

Extent: ☑ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☑ other: nylon pins

Soiling: ☑ biological ☑ staining ☐ efflorescence ☐ other:

Position: ☐ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☐ core drill ☐ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other:

Cleaning: ☐ low pressure water ☐ D/2 and flush ☐ poultice ☐ other:

Priority: 5 Cost: n/c

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal
Section:
Plot: 41

| Name: unknown | Material: ☑ marble ☐ granite ☐ brick ☐ other: |
| Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other: unknown, appear to be random parts |

| Position: ☑ fallen ☐ tilted ☐ unstable ☑ unattached/loose ☑ missing |
| Deterioration: ☑ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other: |
| Extent: ☑ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable |
| Failed/OLD Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other: |

| Soiling: ☑ biological ☑ staining ☑ efflorescence ☐ other: |

| Position: ○ reset/level in ground ○ reset/level to existing base ○ construct new base ○ resquare ○ possible new base required ○ stabilize foundation ○ reset with 0:1:3 mix ○ reset with compound |
| Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other: |
| Treatment: ☐ core drill ☐ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☑ other: location should be marked and parts gathered for safekeeping |

| Cleaning: ☐ low pressure water ☐ D/2 and flush ☐ poultice ☐ other: |

Priority: 5
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Cost: n/c
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Name: Dorothy Randolph
Material: ☑ marble ☐ granite ☐ brick ☐ other:

Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☑ other: ledger

| Position | ☐ fallen ☐ tilted ☐ unstable ☑ unattached/loose ☐ missing |
|---------------------|------------|------------|-------------|----------------|
| **Deterioration:** | ☑ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other: |
| **Extent:** | ☑ extensive >50% ☑ partial 25-50% ☑ minimal <25% ☐ not applicable |
| **Failed/Old Treatments:** | ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other: |
| **Soiling:** | ☑ biological ☑ staining ☐ efflorescence ☐ other: |

| Position | ☐ reset/level in ground ☐ reset/level to existing base ☑ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☑ reset with 0:1:3 mix ☐ reset with compound |
|----------------------|-------------------------|-----------------|----------------|-----------------|-----------------|-----------------|-----------------
| **Failed Treatments:** | ☐ drill/grind ☐ hand tools ☐ solvents ☐ other: |
| **Treatment:** | ☑ core drill ☑ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: |
| **Cleaning:** | ☐ low pressure water ☑ D/2 and flush ☐ poultice ☐ other: |

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1000
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

| Name: unknown | Material: | ☑ marble | ☐ granite | ☐ brick | ☐ other: |

| Type: ☐ headstone | ☐ footstone | ☐ die on base | ☐ tab in socket | ☐ box | ☐ other: ledger |

| Position: ☐ fallen | ☐ tilted | ☐ unstable | ☐ unattached/loose | ☐ missing |

| Deterioration: | ☑ broken | ☐ cracked | ☐ losses | ☐ flaking/sugaring | ☐ ferrous pins | ☐ brass pins | ☐ delamination/detachment | ☐ spalling | ☐ missing fragments | ☐ other: |

| Extent: ☐ extensive >50% | ☐ partial 25-50% | ☐ minimal <25% | ☐ not applicable |

| Failed/Old Treatments: ☐ metal | ☐ adhesives/coatings | ☐ mortar | ☐ other: |

| Soiling: | ☑ biological | ☐ staining | ☐ efflorescence | ☐ other: |

| Position: ☐ reset/level in ground | ☐ reset/level to existing base | ☐ construct new base | ☐ resquare | ☐ possible new base required | ☐ stabilize foundation | ☐ reset with 0:1:3 mix | ☐ reset with compound |

| Failed Treatments: ☐ drill/grind | ☐ hand tools | ☐ solvents | ☐ other: |

| Treatment: ☑ core drill | ☑ drill and pin | ☐ simple adhesive repair | ☐ injection grout | ☐ replace bricks | ☐ mortar | ☐ repoint | ☐ other: infill grave prior to pouring new foundation slab |

| Cleaning: ☐ low pressure water | ☑ D/2 and flush | ☐ poultice | ☐ other: |

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $950
Old Athens Cemetery, Athens, GA
Fence Treatment Proposal

<table>
<thead>
<tr>
<th>Section:</th>
<th>Plot: 44</th>
</tr>
</thead>
</table>

Name: unknown

Fence Type:
- [] woven wire
- [] gas pipe
- [x] ornate
- [] other: unknown

Type:
- [] hairpin
- [] hairpin & picket
- [] bow & picket
- [] bow & hairpin
- [] milled point
- [x] other: picket with finials; ca. 10x20’

Position:
- [x] fallen
- [x] tilted
- [x] unstable
- [x] unattached/loose
- [x] missing

Elements Present:
- 3 of 4 corner posts
- 3 of 6 line posts
- 1 of 2 gate posts
- 0 of 1 gate(s)

Deterioration:
- [] broken
- [] cracked
- [x] losses
- [x] corrosion
- [x] covered in soil
- [] missing fragments
- [x] other: granite support blocks unstable and displaced; much loss of decorative finials; spalling of stone supports; much corrosion of support posts.

Extent:
- [x] extensive >50%
- [] partial 25-50%
- [] minimal <25%
- [] not applicable

Failed/Old Treatments:
- [] welds
- [] adhesives/coatings
- [] ferrous metals
- [] other:

Foundations:
- [] brick
- [] concrete
- [x] granite
- [] other:

Position:
- [x] stabilize foundation
- [x] reset line posts
- [x] reset corner posts
- [] reset/realign gate posts/gate

Paint:
- [] test for lead
- [] air abrasion
- [x] hand tools
- [x] rust converter primer
- [x] top coat alkyd flat paint (two coats)
- [] other:

Treatment:
- [x] remove soil from fence bottom rails
- [x] re-attach fence sections
- [] straighten sections
- [] caulk elements prior to painting
- [x] other: core drill out corroded posts, reset in epoxy; may need to weld extensions onto posts (1-1/8”)

Recast/Replace:
- [] describe:

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP;
3) ongoing deterioration, treatment requires 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $3600
Old Athens Cemetery, Athens, GA

Monument Treatment Proposal

<table>
<thead>
<tr>
<th>Section:</th>
<th>Plot: 45</th>
</tr>
</thead>
</table>

Name: James Espy
Material: □ marble □ granite □ brick □ other: gneiss?
Type: □ headstone □ footstone □ die on base □ tab in socket □ box □ other:
Position: □ fallen □ tilted □ unstable □ unattached/loose □ missing
Deterioration: □ broken □ cracked □ losses □ flaking/sugaring □ ferrous pins □ brass pins □ delamination/detachment □ spalling □ missing fragments □ other: bedding planes exposed
Extent: □ extensive >50% □ partial 25-50% □ minimal <25% □ not applicable
Failed/Old Treatments: □ metal □ adhesives/coatings □ mortar □ other:
Soiling: □ biological □ staining □ efflorescence □ other:
Position: □ reset/level in ground □ reset/level to existing base □ construct new base □ resquare □ possible new base required □ stabilize foundation □ reset with 0:1:3 mix □ reset with compound
Failed Treatments: □ drill/grind □ hand tools □ solvents □ other:
Treatment: □ core drill □ drill and pin □ simple adhesive repair □ injection grout □ replace bricks □ mortar □ repoint □ other: may need to cap
Cleaning: □ low pressure water □ D/2 and flush □ poultice □ other:

Priority: 3
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $450
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal
Section:
Plot: 46

| Name: Mrs. R. [H.] Bass | Material:
| | ☒ marble ☐ granite ☐ brick ☐ other: |
| Type:
| ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☒ box ☐ other: |
| Position:
| ☐ fallen ☐ tilted ☐ unstable ☒ unattached/loose ☐ missing |
| Deterioration:
| ☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins
| ☐ delamination/detachment ☐ spalling ☐ missing fragments ☒ other: box covered in OPC |
| Extent:
| ☐ extensive >50% ☒ partial 25-50% ☐ minimal <25% ☐ not applicable |
| Failed/Old Treatments:
| ☐ metal ☐ adhesives/coatings ☐ mortar ☒ other: OPC is spalling in a few areas, removing sections of brick |
| Soiling:
| ☒ biological ☒ staining ☐ efflorescence ☐ other: |

| Position:
| ☐ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare
| ☐ possible new base required ☐ stabilize foundation ☒ reset with 0:1:3 mix ☐ reset with compound |
| Failed Treatments:
| ☐ drill/grind ☐ hand tools ☐ solvents ☐ other: |
| Treatment:
| ☒ core drill ☒ drill and pin ☐ simple adhesive repair ☐ injection grout ☒ replace bricks
| ☐ mortar ☒ repoint ☒ other: repair and stabilize box; remove loose stucco |
| Cleaning:
| ☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other: |

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1200
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal
Section: Plot: 47

Name: Benjamin Ph[i]zy
Material: ☒ marble ☒ granite ☐ brick ☐ other:

Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☒ box ☐ other:

| Position: | fallen ☐ tilted ☐ unstable ☒ unattached/loose ☐ missing |
|-----------|------------|----------------|----------------|----------------|

| Deterioration: | ☒ broken ☐ cracked ☐ losses ☒ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other: |

| Extent: | ☒ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable |

| Failed/Old Treatments: | ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other: |

| Soiling: | ☒ biological ☐ staining ☐ efflorescence ☐ other: |

| Position: | ☒ reset/level in ground ☒ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound |

| Failed Treatments: | ☐ drill/grind ☐ hand tools ☐ solvents ☐ other: |

| Treatment: | ☒ core drill ☒ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: infill box with sand to create stable support for repairs – may be necessary to support box with interior walls; infill ledger with Jahn M120 Marble Mortar |

| Cleaning: | ☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other: |

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Cost: $1800
Monument Treatment Proposal

Old Athens Cemetery, Athens, GA

Section:

Plot: 48

<table>
<thead>
<tr>
<th>Name: Louisa Ann Whitfield</th>
<th>Material:</th>
<th>☒ marble ☐ granite ☐ brick ☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type:</th>
<th>headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other: ledger</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>☐ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deterioration:</th>
<th>☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extent:</th>
<th>☐ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments:</th>
<th>☐ metal ☐ adhesives/coatings ☐ mortar ☒ other: set on marble slab</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>☒ biological ☐ staining ☐ efflorescence ☐ other:</th>
</tr>
</thead>
</table>

Existing Condition

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>biological ☒ staining ☐ efflorescence ☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>☐ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments:</th>
<th>☐ drill/grind ☐ hand tools ☐ solvents ☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Treatment:</th>
<th>☒ core drill ☒ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: infill lost sections to prevent water accumulation</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cleaning:</th>
<th>☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other:</th>
</tr>
</thead>
</table>

Treatment Strategy

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $850
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:

Plot: 49

<table>
<thead>
<tr>
<th>Name: Ann J. Con[ger]</th>
<th>Material:</th>
<th>marble</th>
<th>granite</th>
<th>brick</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type:</th>
<th>headstone</th>
<th>footstone</th>
<th>die on base</th>
<th>tab in socket</th>
<th>box</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>fallen</th>
<th>tilted</th>
<th>unstable</th>
<th>unattached/loose</th>
<th>missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deterioration:</th>
<th>broken</th>
<th>cracked</th>
<th>losses</th>
<th>flaking/sugaring</th>
<th>ferrous pins</th>
<th>brass pins</th>
<th>delamination/detachment</th>
<th>spalling</th>
<th>missing fragments</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extent:</th>
<th>extensive >50%</th>
<th>partial 25-50%</th>
<th>minimal <25%</th>
<th>not applicable</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments:</th>
<th>metal</th>
<th>adhesives/coatings</th>
<th>mortar</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>biological</th>
<th>staining</th>
<th>efflorescence</th>
<th>other: unusual staining pattern; possibly some material applied to stone?</th>
</tr>
</thead>
</table>

Existing Condition

Position:

- reset/level in ground
- reset/level to existing base
- construct new base
- resquare
- possible new base required
- stabilize foundation
- reset with 0:1:3 mix
- reset with compound

Failed Treatments:

- drill/grind
- hand tools
- solvents
- other:

Treatment:

- core drill
- drill and pin
- simple adhesive repair
- injection grout
- replace bricks
- mortar
- repoint
- other:

Cleaning:

- low pressure water
- D/2 and flush
- poultice
- other:

Priority: 3

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $100
Old Athens Cemetery, Athens, GA

Monument Treatment Proposal

Section:

Plot: 50

Name: Elizabeth Yoakem

Material:
- ☑ marble
- ☐ granite
- ☐ brick
- ☐ other:

Type:
- ☑ headstone
- ☐ footstone
- ☐ die on base
- ☐ tab in socket
- ☐ box
- ☐ other:

Position:
- ☑ fallen
- ☐ tilted
- ☐ unstable
- ☐ unattached/loose
- ☐ missing

Deterioration:
- ☑ broken
- ☐ cracked
- ☐ losses
- ☐ flaking/sugaring
- ☐ ferrous pins
- ☐ brass pins
- ☐ delamination/detachment
- ☐ spalling
- ☐ missing fragments
- ☐ other: very recent break, possible vandalism

Extent:
- ☑ extensive >50%
- ☑ partial 25-50%
- ☐ minimal <25%
- ☐ not applicable

Failed/Old Treatments:
- ☐ metal
- ☐ adhesives/coatings
- ☐ mortar
- ☐ other:

Existing Condition

Soiling:
- ☑ biological
- ☐ staining
- ☐ efflorescence
- ☐ other:

Position:
- ☑ reset/level in ground
- ☐ reset/level to existing base
- ☐ construct new base
- ☐ resquare
- ☐ possible new base required
- ☐ stabilize foundation
- ☐ reset with 0:1:3 mix
- ☐ reset with compound

Failed Treatments:
- ☑ drill/grind
- ☐ hand tools
- ☐ solvents
- ☐ other:

Treatment:
- ☑ core drill
- ☑ drill and pin
- ☑ simple adhesive repair
- ☑ injection grout
- ☐ replace bricks
- ☐ mortar
- ☐ repoint
- ☐ other: infill with Jahn M120 Marble Mortar

Cleaning:
- ☑ low pressure water
- ☑ D/2 and flush
- ☐ poultice
- ☐ other:

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $600
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:
Plot: 51

<table>
<thead>
<tr>
<th>Name: unknown</th>
<th>Material:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☑ marble</td>
<td>☑ granite</td>
</tr>
<tr>
<td></td>
<td>☑ brick</td>
<td>☑ other:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ headstone</td>
<td>☑ footstone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ fallen</td>
<td>☑ tilted</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deterioration:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ broken</td>
<td>☑ cracked</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extent:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ extensive >50%</td>
<td>☑ partial 25-50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ metal</td>
<td>☑ adhesives/coatings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soiling:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ biological</td>
<td>☑ staining</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ reset/level in ground</td>
<td>☑ reset/level to existing base</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ drill/grind</td>
<td>☑ hand tools</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ core drill</td>
<td>☑ drill and pin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cleaning:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ low pressure water</td>
<td>☑ D/2 and flush</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priority:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $150
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Name: unknown

Material: ☒ marble ☐ granite ☐ brick ☐ other:

Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☒ other: ledger

Position: ☐ fallen ☐ tilted ☐ unstable ☒ unattached/loose ☐ missing

Deterioration: ☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other:

Extent: ☒ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:

Soiling: ☒ biological ☐ staining ☐ efflorescence ☐ other:

Position: ☐ reset/level in ground ☐ reset/level to existing base ☒ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☒ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☒ core drill ☒ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: infill with Jahn M120 Marble Mortar

Cleaning: ☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other:

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Monument Treatment Proposal

Old Athens Cemetery, Athens, GA

Section:
Plot: 53

Name: Lucius Pittard
Material:
- ☑ marble
- ☐ granite
- ☐ brick
- ☐ other:

Type:
- ☑ headstone
- ☐ footstone
- ☐ die on base
- ☐ tab in socket
- ☐ box
- ☐ other:

Position:
- ☑ fallen
- ☐ tilted
- ☐ unstable
- ☑ unattached/loose
- ☐ missing

Deterioration:
- ☑ broken
- ☐ cracked
- ☐ losses
- ☑ flaking/sugaring
- ☐ ferrous pins
- ☐ brass pins
- ☐ delamination/detachment
- ☐ spalling
- ☑ missing fragments
- ☐ other:

Extent:
- ☑ extensive >50%
- ☐ partial 25-50%
- ☐ minimal <25%
- ☐ not applicable

Failed/Old Treatments:
- ☐ metal
- ☐ adhesives/coatings
- ☐ mortar
- ☐ other:

Soiling:
- ☑ biological
- ☑ staining
- ☑ efflorescence
- ☐ other:

Position:
- ☐ reset/level in ground
- ☐ reset/level to existing base
- ☑ construct new base
- ☑ resquare
- ☐ possible new base required
- ☑ stabilize foundation
- ☑ reset with 0:1:3 mix
- ☐ reset with compound

Failed Treatments:
- ☐ drill/grind
- ☐ hand tools
- ☐ solvents
- ☐ other:

Treatment:
- ☑ core drill
- ☑ drill and pin
- ☐ simple adhesive repair
- ☑ injection grout
- ☑ replace bricks
- ☐ mortar
- ☑ repoint
- ☐ other: place on OPC slant top support

Cleaning:
- ☐ low pressure water
- ☑ D/2 and flush
- ☐ poultice
- ☐ other:

Priority:
- 2
 1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $650
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Name: Arabella Rebecca Hardeman
Material: □ marble □ granite □ brick □ other:

Type: □ headstone □ footstone □ die on base □ tab in socket □ box □ other: obelisk

Position: □ fallen □ tilted □ unstable □ unattached/loose □ missing

Deterioration: □ broken □ cracked □ losses □ flaking/sugaring □ ferrous pins □ brass pins
□ delamination/detachment □ spalling □ missing fragments □ other:

Extent: □ extensive >50% □ partial 25-50% □ minimal <25% □ not applicable

Failed/Old Treatments: □ metal □ adhesives/coatings □ mortar □ other:

Position: □ reset/level in ground □ reset/level to existing base □ construct new base □ resquare
□ possible new base required □ stabilize foundation □ reset with 0:1:3 mix □ reset with compound

Failed Treatments: □ drill/grind □ hand tools □ solvents □ other:

Treatment: □ core drill □ drill and pin □ simple adhesive repair □ injection grout □ replace bricks
□ mortar □ repoint □ other:

Cleaning: □ low pressure water □ D/2 and flush □ poultice □ other:

Priority: 3
Cost: $1200

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

<table>
<thead>
<tr>
<th>Section:</th>
<th>Plot: 54 wall</th>
</tr>
</thead>
</table>

Name: Hardeman
Material:
- ☒ marble
- ☐ granite
- ☒ brick
- ☐ other: |

Type:
- ☐ headstone
- ☐ footstone
- ☐ die on base
- ☐ tab in socket
- ☐ box
- ☒ other: plot wall |

Position:
- ☒ fallen
- ☐ tilted
- ☒ unstable
- ☐ unattached/loose
- ☐ missing |

Deterioration:
- ☐ broken
- ☐ cracked
- ☐ losses
- ☐ flaking/sugaring
- ☐ ferrous pins
- ☐ brass pins
- ☐ delamination/detachment
- ☐ spalling
- ☒ missing fragments
- ☐ other: |

Extent:
- ☒ extensive >50%
- ☐ partial 25-50%
- ☐ minimal <25%
- ☐ not applicable |

Failed/Old Treatments:
- ☐ metal
- ☐ adhesives/coatings
- ☐ mortar
- ☐ other: |

Soiling:
- ☐ biological
- ☐ staining
- ☐ efflorescence
- ☐ other: |

Position:
- ☐ reset/level in ground
- ☐ reset/level to existing base
- ☐ construct new base
- ☐ resquare
- ☐ possible new base required
- ☐ stabilize foundation
- ☐ reset with 0:1:3 mix
- ☐ reset with compound |

Failed Treatments:
- ☐ drill/grind
- ☐ hand tools
- ☐ solvents
- ☐ other: |

Treatment:
- ☒ core drill
- ☒ drill and pin
- ☐ simple adhesive repair
- ☐ injection grout
- ☒ replace bricks
- ☐ mortar
- ☒ repoint
- ☐ other: stabilize sections of wall remaining, reset fallen section |

Cleaning:
- ☐ low pressure water
- ☐ D/2 and flush
- ☐ poultice
- ☐ other: |

Priority: 3
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Cost: $800
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

<table>
<thead>
<tr>
<th>Section:</th>
<th>Plot: 55</th>
</tr>
</thead>
</table>

Name: unknown
Material: □ marble □ granite □ brick □ other: gneiss ?

Type: □ headstone □ footstone □ die on base □ tab in socket □ box □ other: fieldstone

Position: □ fallen □ tilted □ unstable □ unattached/loose □ missing

Deterioration: □ broken □ cracked □ losses □ flaking/sugaring □ ferrous pins □ brass pins □ delamination/detachment □ spalling □ missing fragments □ other: vandalized with paint

Extent: □ extensive >50% □ partial 25-50% □ minimal <25% □ not applicable

Failed/Old Treatments: □ metal □ adhesives/coatings □ mortar □ other:

Soiling: □ biological □ staining □ efflorescence □ other: paint

Position: □ reset/level in ground □ reset/level to existing base □ construct new base □ resquare □ possible new base required □ stabilize foundation □ reset with 0:1:3 mix □ reset with compound

Failed Treatments: □ drill/grind □ hand tools □ solvents □ other:

Treatment: □ core drill □ drill and pin □ simple adhesive repair □ injection grout □ replace bricks □ mortar □ repoint □ other:

Cleaning: □ low pressure water □ D/2 and flush □ poultice □ other: test with Cathedral Stone paint strippers for paint removal

Priority: 3
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Cost: $250
Monument Treatment Proposal

Old Athens Cemetery, Athens, GA

Section:
Plot: 56

Name: Samuel Pressley
Material: ☑ marble ☐ granite ☐ brick ☐ other:

Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☑ other: ledger

Position: ☐ fallen ☐ tilted ☐ unstable ☑ unattached/loose ☐ missing

Deterioration: ☑ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☑ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☑ missing fragments ☐ other:

Extent: ☑ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:

Soiling: ☑ biological ☐ staining ☐ efflorescence ☐ other:

Existing Condition

Position: ☐ reset/level in ground ☑ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☑ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☑ core drill ☑ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: infill with Jahn M120 Marble Mortar

Cleaning: ☐ low pressure water ☑ D/2 and flush ☐ poultice ☐ other:

Treatment Strategy

Priority:
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1400
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:
Plot: 57

Name: Mrs. Mary Gorley
Material:
- ☑ marble
- ☐ granite
- ☐ brick
- ☐ other:

Type:
- ☐ headstone
- ☐ footstone
- ☐ die on base
- ☐ tab in socket
- ☑ box
- ☐ other:

Position:
- ☐ fallen
- ☐ tilted
- ☐ unstable
- ☑ unattached/loose
- ☐ missing

Deterioration:
- ☑ broken
- ☐ cracked
- ☐ losses
- ☐ flaking/sugaring
- ☐ ferrous pins
- ☐ brass pins
- ☐ delamination/detachment
- ☐ spalling
- ☐ missing fragments
- ☐ other:

Extent:
- ☐ extensive >50%
- ☑ partial 25-50%
- ☐ minimal <25%
- ☐ not applicable

Failed/Old Treatments:
- ☐ metal
- ☐ adhesives/coatings
- ☑ mortar
- ☐ other:

Soiling:
- ☑ biological
- ☒ staining
- ☐ efflorescence
- ☐ other:

Existing Condition

Position:
- ☐ reset/level in ground
- ☐ reset/level to existing base
- ☐ construct new base
- ☐ resquare
- ☐ possible new base required
- ☐ stabilize foundation
- ☐ reset with 0:1:3 mix
- ☐ reset with compound

Failed Treatments:
- ☐ drill/grind
- ☐ hand tools
- ☐ solvents
- ☐ other:

Treatment:
- ☑ core drill
- ☑ drill and pin
- ☐ simple adhesive repair
- ☐ injection grout
- ☐ replace bricks
- ☐ mortar
- ☐ repoint
- ☐ other: infill with Jahn M120 Marble Mortar, including missing section.

Cleaning:
- ☐ low pressure water
- ☑ D/2 and flush
- ☐ poultice
- ☐ other:

Treatment Strategy

- **Priority:** 2
 1) hazardous, immediate action; 2) unstable, requires treatment ASAP;
 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $1400
Old Athens Cemetery, Athens, GA
Fence Treatment Proposal

Section:
Plot: 58

Name: Gorley
Fence Type: ☐ woven wire ☐ gas pipe ☒ ornate ☐ other: unknown

Type: ☐ hairpin ☐ hairpin & picket ☐ bow & picket ☐ bow & hairpin ☐ milled point ☒ other: picket with finials; ca. 11½ x 8½'

Position: ☐ fallen ☒ tilted ☒ unstable ☒ unattached/loose ☒ missing

Elements Present: 4 of 4 corner posts 2 of 2 line posts 0 of 0 gate posts 0 of 0 gate(s)

Deterioration: ☐ broken ☐ cracked ☒ losses ☒ corrosion ☒ covered in soil ☒ missing fragments ☒ other: 5 of 6 caps missing, one remaining cap partial only; one support casting broken; 2 support rods broken; one bottom rail broken, many pickets missing, most finials missing.

Extent: ☒ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ welds ☐ adhesives/coatings ☐ ferrous metals ☐ other:

Foundations: ☐ brick ☐ concrete ☐ granite ☒ other: unknown; generally stable

Position: ☒ stabilize foundation ☐ reset line posts ☐ reset corner posts ☐ reset/realign gate posts/gate

Paint: ☐ test for lead ☐ air abrasion ☒ hand tools ☒ rust converter primer ☒ top coat alkyd flat paint (two coats) ☐ other:

Treatment: ☒ remove soil from fence bottom rails ☒ re-attach fence sections ☐ straighten sections ☐ caulk elements prior to painting ☒ other: seal 5 posts without caps to prevent water intrusion; replace missing top rail with mild steel to enclose plot

Recast/Replace: ☐ describe:

Priority: 2
Cost: $2800

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment requires 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section: Plot: 59

Name: unknown
Material: ☒ marble ☐ granite ☐ brick ☐ other:

Type: ☒ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:

Position: ☐ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☒ missing

Deterioration: ☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins
☐ delamination/detachment ☐ spalling ☒ missing fragments ☐ other:

Extent: ☐ extensive >50% ☒ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☒ other: previous repair failed, top now missing

Soiling: ☐ biological ☒ staining ☐ efflorescence ☐ other:

Priority: 5

Cost: n/c
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section: Plot: 60

Name: unknown Material: ☒ marble ☐ granite ☐ brick ☐ other:

Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☒ other: ledger

Position: ☐ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☒ missing

Deterioration: ☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☒ missing fragments ☐ other:

Extent: ☐ extensive >50% ☒ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☒ other: old repair, failed and now missing

Soiling: ☒ biological ☐ staining ☐ efflorescence ☐ other:

Position: ☐ reset/level in ground ☒ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☐ core drill ☐ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other:

Cleaning: ☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other:

Priority: 2 Cost: $300

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal
Section:
Plot: 61

<table>
<thead>
<tr>
<th>Name: Elizabeth Julie McKinley</th>
<th>Material:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☑ marble ☐ granite ☐ brick ☐ other:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type:</th>
<th>headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other: ledger</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>fallen ☐ tilted ☐ unstable ☑ unattached/loose ☐ missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deterioration:</th>
<th>broken ☑ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extent:</th>
<th>extensive >50% ☑ partial 25-50% ☐ minimal <25% ☐ not applicable</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments:</th>
<th>metal ☐ adhesives/coatings ☐ mortar ☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>biological ☑ staining ☐ efflorescence ☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Existing Condition</th>
<th>Treatment Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position:</td>
<td>reset/level in ground ☑ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound</td>
</tr>
<tr>
<td>Failed Treatments:</td>
<td>drill/grind ☐ hand tools ☐ solvents ☐ other:</td>
</tr>
<tr>
<td>Treatment:</td>
<td>core drill ☑ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: infill lost sections using Jahn M120 Marble Mortar & pin</td>
</tr>
<tr>
<td>Cleaning:</td>
<td>low pressure water ☐ D/2 and flush ☐ poultice ☐ other:</td>
</tr>
</tbody>
</table>

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Cost: $1700
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Name: McKinley
Material: ☒ marble ☐ granite ☒ brick ☐ other:

Type: ☐ headstone ☒ footstone ☐ die on base ☐ tab in socket ☐ box ☒ other: brick plot wall

| Position | ☒ fallen ☐ tilted ☐ unstable ☒ unattached/loose ☐ missing |

| Deterioration | ☐ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other: |

| Extent | ☒ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable |

| Failed/Old Treatments | ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other: |

| Soiling | ☐ biological ☐ staining ☐ efflorescence ☐ other: |

| Position | ☐ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound |

| Failed Treatments | ☐ drill/grind ☐ hand tools ☐ solvents ☐ other: |

| Treatment | ☒ core drill ☒ drill and pin ☒ simple adhesive repair ☒ injection grout ☒ replace bricks ☐ mortar ☒ repoint ☒ other: stabilize where present |

| Cleaning | ☐ low pressure water ☐ D/2 and flush ☐ poultice ☐ other: |

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $800
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

<table>
<thead>
<tr>
<th>Section:</th>
<th>Plot: 63</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Sarah T. Church</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material:</td>
<td>☒ marble ☐ granite ☐ brick ☐ other:</td>
</tr>
<tr>
<td>Type:</td>
<td>☒ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:</td>
</tr>
</tbody>
</table>

Position:	☐ fallen ☐ tilted ☒ unstable ☐ unattached/loose ☐ missing
Deterioration:	☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other:
Extent:	☐ extensive >50% ☒ partial 25-50% ☐ minimal <25% ☐ not applicable
Failed/Old Treatments:	☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:
Soiling:	☒ biological ☐ staining ☐ efflorescence ☐ other:

Position:	☒ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound
Failed Treatments:	☐ drill/grind ☐ hand tools ☐ solvents ☐ other:
Treatment:	☒ core drill ☒ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: infill with Jahn M120 Marble Mortar
Cleaning:	☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other:

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $800
APPENDIX 3. TREATMENT PROPOSALS FOR RECENTLY VANDALIZED STONES

This appendix provides treatment proposals for stones reported to have been vandalized between October 30 and November 5, 2005 (University of Georgia Police Report 06-2348). These are presented separately from other stone repairs so the reader can clearly see the cost of vandalism. The repairs necessitated by this single incident will cost $4,300, not including travel, per diem, and lodging. All together, the University will spend approximately $9,000 for the repair of this vandalism. Clearly understanding the cost of such behavior helps emphasize the importance of taking proactive steps to reduce the problem and aggressive pursue vandals for restitution.
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Name: Ellen Bain

Material: ☑ marble ☐ granite ☐ brick ☐ other:

Type: ☑ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:

Position: ☑ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing

Deterioration: ☐ broken ☑ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins
☐ delamination/detachment ☐ spalling ☐ missing fragments ☑ other: old repair, now failed

Extent: ☐ extensive >50% ☑ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☑ other: nylon pins/epoxy

Soiling: ☑ biological ☐ staining ☐ efflorescence ☐ other:

Existing Condition

Position: ☑ reset/level in ground ☑ reset/level to existing base ☐ construct new base ☒ resquare
☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☑ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☑ core drill ☑ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks
☐ mortar ☐ repoint ☑ other: in with Jahn M120

Cleaning: ☐ low pressure water ☑ D/2 and flush ☐ poultice ☐ other:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP;
3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $800
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Section:
Plot:

<table>
<thead>
<tr>
<th>Name: Elizabeth Boggs</th>
<th>Material:</th>
<th>marble</th>
<th>granite</th>
<th>brick</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type:</th>
<th>headstone</th>
<th>footstone</th>
<th>die on base</th>
<th>tab in socket</th>
<th>box</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>fallen</th>
<th>tilted</th>
<th>unstable</th>
<th>unattached/loose</th>
<th>missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deterioration:</th>
<th>broken</th>
<th>cracked</th>
<th>losses</th>
<th>flaking/sugaring</th>
<th>ferrous pins</th>
<th>brass pins</th>
<th>delamination/detachment</th>
<th>spalling</th>
<th>missing fragments</th>
<th>other:</th>
<th>old break, top missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extent:</th>
<th>extensive >50%</th>
<th>partial 25-50%</th>
<th>minimal <25%</th>
<th>not applicable</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments:</th>
<th>metal</th>
<th>adhesives/coatings</th>
<th>mortar</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>biological</th>
<th>staining</th>
<th>efflorescence</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Position:</th>
<th>reset/level in ground</th>
<th>reset/level to existing base</th>
<th>construct new base</th>
<th>resquare</th>
<th>possible new base required</th>
<th>stabilize foundation</th>
<th>reset with 0:1:3 mix</th>
<th>reset with compound</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments:</th>
<th>drill/grind</th>
<th>hand tools</th>
<th>solvents</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Treatment:</th>
<th>core drill</th>
<th>drill and pin</th>
<th>simple adhesive repair</th>
<th>injection grout</th>
<th>replace bricks</th>
<th>mortar</th>
<th>repoint</th>
<th>other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cleaning:</th>
<th>low pressure water</th>
<th>D/2 and flush</th>
<th>poultice</th>
<th>other:</th>
</tr>
</thead>
</table>

Priority: 2

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $100
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Name: Jane Fullwood
Material: ☒ marble ☐ granite ☐ brick ☐ other:

Type: ☒ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:

Position: ☒ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing

Deterioration: ☐ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins
☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other:

Extent: ☒ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:

Soiling: ☒ biological ☐ staining ☐ efflorescence ☐ other:

Position: ☒ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare
☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☒ core drill ☐ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks
☐ mortar ☐ repoint ☐ other:

Cleaning: ☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP;
3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $100
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

<table>
<thead>
<tr>
<th>Section:</th>
<th>Plot:</th>
</tr>
</thead>
</table>

Name: William Cherry
Material: ☒ marble ☐ granite ☐ brick ☐ other:

Type: ☒ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:

<table>
<thead>
<tr>
<th>Position:</th>
<th>☒ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deterioration:</th>
<th>☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extent:</th>
<th>☒ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments:</th>
<th>☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soiling:</th>
<th>☒ biological ☐ staining ☐ efflorescence ☐ other:</th>
</tr>
</thead>
</table>

Position: ☒ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

<table>
<thead>
<tr>
<th>Failed Treatments:</th>
<th>☐ drill/grind ☐ hand tools ☐ solvents ☐ other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Treatment:</th>
<th>☒ core drill ☒ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: infill with Jahn M120</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cleaning:</th>
<th>☐ low pressure water ☒ D/2 and flush ☐ poultice ☐ other:</th>
</tr>
</thead>
</table>

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $950
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

<table>
<thead>
<tr>
<th>Section:</th>
<th>Plot:</th>
</tr>
</thead>
</table>

Name: “Little Sis”
Material: ☑ marble ☐ granite ☐ brick ☐ other:

Type: ☐ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:

Position: ☑ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing

Deterioration: ☑ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☐ other:

Extent: ☑ extensive >50% ☐ partial 25-50% ☑ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:

Soiling: ☑ biological ☑ staining ☐ efflorescence ☐ other:

Priority: 2
1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable

Cost: $100

Existing Condition

Position: ☑ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound

Failed Treatments: ☐ drill/grind ☐ hand tools ☐ solvents ☐ other:

Treatment: ☑ core drill ☐ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other:

Cleaning: ☑ low pressure water ☑ D/2 and flush ☐ poultice ☐ other:
Monument Treatment Proposal

Name: Dr. Thomas King
Material: ☑ marble ☐ granite ☐ brick ☐ other:
Type: ☑ headstone ☐ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:

<table>
<thead>
<tr>
<th>Position</th>
<th>Fallen</th>
<th>Tilted</th>
<th>Unstable</th>
<th>Unattached/Loose</th>
<th>Missing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deterioration</th>
<th>Broken</th>
<th>Cracked</th>
<th>Losses</th>
<th>Flaking/Sugaring</th>
<th>Ferrous Pins</th>
<th>Brass Pins</th>
<th>Delamination/Detachment</th>
<th>Spalling</th>
<th>Missing Fragments</th>
<th>Other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extent</th>
<th>Extensive >50%</th>
<th>Partial 25-50%</th>
<th>Minimal <25%</th>
<th>Not Applicable</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed/Old Treatments</th>
<th>Metal</th>
<th>Adhesives/Coatings</th>
<th>Mortar</th>
<th>Other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soiling</th>
<th>Biological</th>
<th>Staining</th>
<th>Efflorescence</th>
<th>Other:</th>
</tr>
</thead>
</table>

Existing Condition

<table>
<thead>
<tr>
<th>Position</th>
<th>Reset/Level in Ground</th>
<th>Reset/Level to Existing Base</th>
<th>Construct New Base</th>
<th>Resquare</th>
<th>Possible New Base Required</th>
<th>Stabilize Foundation</th>
<th>Reset with 0:1:3 Mix</th>
<th>Reset with Compound</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments</th>
<th>Drill/Grind</th>
<th>Hand Tools</th>
<th>Solvents</th>
<th>Other:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Core Drill</th>
<th>Drill and Pin</th>
<th>Simple Adhesive Repair</th>
<th>Injection Grout</th>
<th>Replace Bricks</th>
<th>Mortar</th>
<th>Repoint</th>
<th>Other: Infill with Jahn M120; may be necessary to repair below grade brick</th>
</tr>
</thead>
</table>

Cleaning

<table>
<thead>
<tr>
<th>Cleaning</th>
<th>Low Pressure Water</th>
<th>D/2 and Flush</th>
<th>Poultice</th>
<th>Other:</th>
</tr>
</thead>
</table>

Treatment Strategy

1. Hazardous, immediate action; 2. Unstable, requires treatment ASAP; 3. Ongoing deterioration, treatment required 2-3 years; 4. Re-inspect in 5-10 years; 5. Irreparable

Priority: 2

Cost: $900
Old Athens Cemetery, Athens, GA
Monument Treatment Proposal

Name: Church children
Material: ☒ marble ☑ granite ☐ brick ☐ other:

Type: ☒ headstone ☑ footstone ☐ die on base ☐ tab in socket ☐ box ☐ other:

Position: ☒ fallen ☐ tilted ☐ unstable ☐ unattached/loose ☐ missing

Deterioration: ☒ broken ☐ cracked ☐ losses ☐ flaking/sugaring ☐ ferrous pins ☐ brass pins ☐ delamination/detachment ☐ spalling ☐ missing fragments ☑ other: headstone has 2 breaks

Extent: ☐ extensive >50% ☐ partial 25-50% ☐ minimal <25% ☐ not applicable

Failed/Old Treatments: ☐ metal ☐ adhesives/coatings ☐ mortar ☐ other:

Soiling: ☐ biological ☒ staining ☐ efflorescence ☐ other:

<table>
<thead>
<tr>
<th>Existing Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position: ☒ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ drill/grind ☐ hand tools ☐ solvents ☐ other:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position: ☒ reset/level in ground ☐ reset/level to existing base ☐ construct new base ☐ resquare ☐ possible new base required ☐ stabilize foundation ☐ reset with 0:1:3 mix ☐ reset with compound</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Failed Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ drill/grind ☐ hand tools ☐ solvents ☐ other:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ core drill ☑ drill and pin ☐ simple adhesive repair ☐ injection grout ☐ replace bricks ☐ mortar ☐ repoint ☐ other: infill with Jahn M120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ low pressure water ☐ D/2 and flush ☐ poultice ☐ other:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priority</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$1350</td>
</tr>
</tbody>
</table>

1) hazardous, immediate action; 2) unstable, requires treatment ASAP; 3) ongoing deterioration, treatment required 2-3 years; 4) re-inspect in 5-10 years; 5) irreparable
Cemetery Preservation Plans

Historical Research

Identification of Grave Locations and Mapping

Condition Assessments

Treatment of Stone and Ironwork